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Foreword

The Workshop on “QCD and Weak Boson Physics in Run II”, the proceedings of which are presented
here, took place at Fermilab from March to November 1999. It was promoted and financially supported
by the Fermilab Theory Group and the Fermilab Directorate.

The specific goal of the Workshop was to promote QCD and weak boson physics studies for the upcom-
ing Run II of the Tevatron. Organization of the Workshop began in the Fall of 1998 with the formation
of six working groups: QCD tools for heavy flavors and new physics searches, jet physics, precision
measurements, photons and weak bosons, parton distribution functions, and diffractive physics and color
coherence. In each Group, theorists together with experimentalists from CDF and DØ acted as Conven-
ers.

The first general meeting took place March 4 – 6, 1999. A second meeting was held on June 3
and 4, 1999, and the concluding general meeting was held November 4 – 6, 1999. These gen-
eral meetings and a number of additional meetings of the individual working groups brought to-
gether a significant number of theorists and experimentalists from both inside and outside Fermilab,
who have contributed to the Working Group discussions and many of whom presented talks at the
plenary meetings. The detailed program of the general meetings can be found at Workshop home-
page, http://www-theory.fnal.gov/people/ellis/QCDWB/QCDWB.html, together with electronic
versions of the individual chapters of this report. Several working group reports, and a large fraction
of individual contributions to the reports of the parton distribution functions and the diffractive physics
working groups are also available via the Los Alamos archive.

Without the active participation of both the experimental and the theoretical community the Workshop
would not have succeeded. We thank all our colleagues who invested much time and effort in these
studies for their absolutely essential contributions. Particular thanks are due the members of the CTEQ
Collaboration for their strong involvement in the Workshop, and to the members of both CDF and DØ
for enthusiastically contributing in addition to the heavy load of getting the detectors ready for Run II.
Special thanks go to Cynthia Sazama and Patti Poole for their invaluable help in the organization and the
running of the Workshop.

Ulrich Baur
Keith Ellis
Dieter Zeppenfeld
Editors
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Report of the QCD Tools Working Group

Convenors: Keith Ellis (FNAL), Rick Field (Florida), Stephen Mrenna (Davis) and Greg Snow (Nebraska)

Working Group Members: C. Balázs (Hawaii), E. Boos (Moscow), J. Campbell (FNAL), R. Demina (Kansas
State), J. Huston (MSU), C-Y.P. Ngan (MIT), A. Petrelli (ANL), I. Puljak (LNPHE), T. Sjöstrand (Lund), J.
Smith (Stony Brook), D. Stuart (FNAL), K. Sumorok (MIT)

We report on the activities of the “QCD Tools for heavy flavors and new physics searches” working group of the Run II
Workshop on QCD and Weak Bosons. The contributions cover the topics of improved parton showering and comparisons
of Monte Carlo programs and resummation calculations, recent developments in PYTHIA, the methodology of measuring
backgrounds to new physics searches, variable flavor number schemes for heavy quark electro-production, the underlying
event in hard scattering processes, and the Monte Carlo MCFM for NLO processes.

1. Overview

The task of the “QCD Tools for heavy flavors and
new physics searches working group” was to evaluate
the status of the tools – invariably computer programs
that simulate physics processes at colliders – that
are being used to estimate signal and background
rates at the Tevatron, and to isolate areas of con-
cern. The contributions presented here cover several
topics related to that endeavor. It is hoped that
the next period of data-taking at the Tevatron will
reveal indirect or direct evidence of physics beyond
the Standard Model. The precise measurement of the
W boson mass M � and its correlation with the top
quark mass m � is one example of an indirect probe
of the Standard Model. The production of a light
Higgs boson in association with a W or Z boson
is an obvious example of a direct one. While both
measurements are related to electroweak symmetry
breaking, it requires a quantitative understanding of
perturbative and non–perturbative QCD to interpret
data.

Because of the importance of the M � measurement,
and since gauge boson production in association with
jets is a serious background in many new physics
searches, much effort was devoted to understanding
gauge boson production processes. It is well known
that the emission of many soft gluons has a profound
effect on the kinematics of gauge boson production.
Two calculational methods have been used to com-
pare “theory” with data: (1) analytic resummation
of several series of important logarithms, and (2)
parton showering based on DGLAP–evolved parton
distribution functions. Here, there are reports on our
understanding of both, and improvements. Note also
that diboson production is often a background too.

In the Standard Model, and its minimal super-
symmetric extension, the mechanism that generates

mass for the electroweak gauge bosons also generates
fermion mass. From an agnostic point of view, the
fact that the W and Z bosons and the top quark
have roughly similar masses, and these masses are
quite disparate from, say, the electron or neutrino
masses, is some evidence that heavy flavor is related
to electroweak symmetry breaking. Many of the search
strategies for Run II rely on tagging c and b quarks or τ
leptons. For this reason, there are several contributions
regarding issues of determining backgrounds in Run II.

2. Performing parton showering at Next-to-
Leading-Order Accuracy

by S. Mrenna

2.1. Introduction
In the near future, experiments at the Tevatron

will search for evidence of physics that supersedes the
standard model. Important among the tools that will
be used in these searches are showering event gener-
ators or showering Monte Carlos (SMC’s). Among
the most versatile and popular of these are the Monte
Carlos HERWIG[1], ISAJET[2], and PYTHIA[3].
SMC’s are useful because they accurately describe the
emission of multiple soft gluons, which is, in effect,
an all orders problem in QCD. However, they only
predict total cross sections to a leading order accuracy,
and, thus, can demonstrate a sizeable dependence on
the choice of scale used for the parton distribution
functions (PDF’s) or coupling constants (particularly
α � ). Also, in general, they do not translate smoothly
into kinematic configurations where only one, hard
parton is emitted. In distinction to SMC’s are certain
analytic calculations which account for multiple soft
gluon emission and higher order corrections to the hard
scattering. These resummation calculations, however,
integrate out the kinematics of the soft gluons, and,
thus, are limited in their predictive power. They
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can, for example, describe the kinematics of a heavy
gauge boson produced in hadron collision, but can-
not predict the number or distribution of jets that
accompany it. However, searches for new physics,
either directly or indirectly through measurements
of precision electroweak observables, often demand
detailed knowledge of kinematic distributions and jet
activity. Furthermore, W+jets (and Z+jets) processes
are often backgrounds to SUSY or technicolor signa-
tures, and we demand a reliable prediction of their
properties. Here, we report on recent progress in
improving the predictive power of showering Monte
Carlos by incorporating the positive features of the
analytic resummation calculations into the showering
algorithms. In the ensuing discussion, we focus on
the specific example of W boson production at a
hadron collider, when the W decays leptonically. The
results apply equally well to γ∗, Z and Higgs bosons (or
any heavy, color–singlet particle) produced in hadron
collisions.

2.2. Parton Showers
SMC’s are based on the factorization theorem [4],

which, roughly, states that physical observables in
QCD are the product of short–distance functions and
long–distance functions. The short–distance functions
are calculable in perturbation theory. The long–
distance functions are fit at a scale, but their evolution
to any other scale is also calculable in perturbation
theory.

A standard application of the factorization theorem
is to describe W boson production at a pp̄ collider
at a fixed order in α � . The production cross section
is obtained by convoluting the partonic subprocesses
evaluated at the scale Q with the PDF’s evaluated
at Q. The partons involved in the hard collision
must be sufficiently virtual to be resolved inside the
proton, and a natural choice for the scale Q is Q =
M � [5]. However, the valence quarks in the proton
have virtualities at a much lower scale Q0 of the
order of 1 GeV. The connection between the partons
at the low scale Q0 and those at the high scale Q
is described by the DGLAP evolution equations [6].
The DGLAP equations include the most important
kinematic configurations of the splittings a → bc,
where a, b and c represent different types of partons in
the hadron (q, g, etc.). Starting from a measurement
of the PDF’s at a low scale Q0, a solution of the
DGLAP equations yields the PDF’s at the hard scale
Q. Equivalently, starting with a parton c involved
in a hard collision, it is also possible to determine
probabilistically which splittings generated c. In the
process of evolving parton c back to the valence quarks
in the proton, a number of spectator partons (e.g.

parton b in the branching a→ bc) are resolved. These
partons constitute a shower of soft and/or collinear
jets that accompany the W–boson, and influence its
kinematics.

The shower described above occurs with unit prob-
ability and does not change the total cross section
for W–boson production calculated at the scale Q [7].
The showering can be attached to the hard–scattering
process based on a probability distribution after the
hard scattering has been selected. Once kinematic cuts
are applied, the transverse momentum and rapidity
of the W–boson populate regions never accessed by
the differential partonic cross section calculated at a
fixed order. This is consistent, since the fixed–order
calculation was inclusive (i.e., pp̄ → W +X) and was
never intended to describe the detailed kinematics of
the W–boson in isolation. The parton shower, in effect,
resolves the structure of the inclusive state of partons
denoted as X . In practice, the fixed order partonic
cross section (without showering) can still be used to
describe properties of the decay leptons as long as the
observable is well defined (e.g., the number of leptons
with central rapidity and high transverse momentum,
but not the distribution of transverse momentum of
the W ).

Here, we focus on the case of initial state gluon
radiation. More details can be found in Ref. [8], for
example. Showering of the parton b with momentum
fraction x resolved at the scale Q2 = e

�
is driven by a

Sudakov form factor exp(−S), such as[9]

exp

(
−
∫ �

� ′

∫ x
x+ε

x
1−ε

dt′′dz
α � (z, t′′)

2π
P̂ � → ��� (z)

x′f � (x′, t′)
xf � (x, t′)

)
,

x′ = x/z, (1)

which is implemented in PYTHIA, and the formally
equivalent expression[10]

∆(t′)
f � (x, t′)

f � (x, t)

∆(t)
,

∆(t′) = exp

(
−
∫ � ′

� 0

∫ 1− �

�
dt′′dz

α � (z, t′′)
2π

P̂ � → ��� (z)

)
,

which is implemented in HERWIG. In the above
expressions, t0 is a cutoff scale for the showering, P̂
is a DGLAP splitting function, and f � is a parton
distribution function. The Sudakov form factor pre-
sented here is a solution of the DGLAP equation,
and gives the probability of evolving from the scale
Q2 = e

�
to Q′2 = e

� ′
with no resolvable branching.

The Sudakov form factor contains all the information
necessary to reconstruct a shower, since it encodes
the change in virtuality of a parton until a resolvable
showering occurs. A parton shower is then an iterative
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solution of the equation r = exp(−S), where r is a
random number uniformly distributed in the interval
[0, 1], until a solution for Q′ is found which is below a
cutoff. For consistency, the cutoff should represent the
lowest scale of resolvable emission Q0. The evolution
proceeds backwards from a large, negative scale −|Q2|
to a small, negative cutoff scale −|Q2

0|.
After choosing the change in virtuality, a particu-

lar backwards branching and the splitting variable z
are selected from the probability function based on
their relative weights (a summation over all possible
branchings a → bc is implied in these expressions).
The details of how a full shower is reconstructed in the
PYTHIA Monte Carlo, for example, can be found in
Ref. [3]. The structure of the shower can be complex:
the transverse momentum of the W–boson is built up
from a whole series of splittings and boosts, and is
known only at the end of the shower, after the final
boost.

The SMC formulation outlined above is fairly in-
dependent of the hard scattering process considered.
Only the initial choice of partons and possibly the high
scale differs. Therefore, this formalism can be applied
universally to many different scattering problems. In
effect, soft and collinear gluons are not sensitive to the
specifics of the hard scattering, only the color charge
of the incoming partons.

2.3. Analytic Resummation
At hadron colliders, the partonic cross sections

can receive substantial corrections at higher orders
in α � . This affects not only the total production
rate, but also the kinematics of the W boson. At
leading order (α0

� ), the W–boson has a δ(Q2� ) dis-
tribution in Q2� . At next–to–leading order, the
real emission of a single gluon generates a contri-
bution to dσ/dQ2� that behaves as Q−2� α � (Q2� ) and
Q−2� α � (Q2� ) ln(Q2/Q2� ) while the leading order, soft,
and virtual corrections are proportional to −δ(Q2� ).
At higher orders, the most singular terms follow the
pattern of α � (Q2� )

� ∑2 � −1� =0 ln
�

(Q2/Q2� ) = α
�
� L

� ≡
V

�
. The logarithms arise from the incomplete can-

cellation of the virtual and real QCD corrections, but
this cancellation becomes complete for the integrated
spectrum, where the real gluon can become arbitrarily
soft and/or collinear to other partons. The pattern
of singular terms suggest that perturbation theory
should be performed in powers of V

�
instead of α

�
� .

This reorganization of the perturbative series is called
resummation.

The first studies of soft gluon emission resummed the
leading logarithms [11,12], leading to a suppression of
the cross section at small Q � . The suppression under-
lies the importance of including sub–leading logarithms

[13]. The most rigorous approach to the problem of
multiple gluon emission is the Collins–Soper–Sterman
(CSS) formalism for transverse momentum resumma-
tion [14], which resums all of the important logarithms.
This is achieved after a Fourier transformation with
respect to Q � in the variable b, so that the series
involving the delta function and terms V

�
simplifies

to the form of an exponential. Hence, the soft gluon
emission is resummed or exponentiated in this b–space
formalism. Despite the successes of the b–space for-
malism, there are drawbacks: the soft gluon dynamics
are integrated out, and the Sudakov form factor is a
Fourier transform.

The CSS formalism was used by its authors to
predict both the total cross section to NLO and the
kinematic distributions of the W–boson to all orders
[15] at hadron colliders. A similar treatment was
presented using the AEGM formalism [16], that does
not involve a Fourier transform, but is evaluated
directly in transverse momentum Q � space. When
evaluated at NLO, the two formalisms are equivalent
to NNNL order in α � , and agree with the fixed order
calculation of the total cross section [17]. A more
detailed numerical comparison of the two predictions
can be found in Ref. [18].

Recently, the AEGM formalism has been re-
investigated, and an approximation to the b–space
formalism has been developed in Q � –space which
retains its predictive features [19] (see also the recent
eprint [20]). This formulation does have a simple,
physical interpretation, and can be used to develop
an alternate algorithm for parton showering which in-
cludes higher–order corrections to the hard scattering.
For this reason, we focus on the Q � –space formalism.
To NNNL accuracy, the Q � space expression agrees
exactly with the b–space expression, and has the form
[19]:

dσ(h1h2 → V (∗)X)

dQ2 dQ2� dy
=

d

dQ2� W̃ (Q � , Q, x1, x2)

+Y (Q � , Q, x1, x2). (3)

In this expression,Q, Q � and y describe the kinematics
of the boson V , the function Y is regular as Q � → 0
and corrects for the soft gluon approximation, and the
function W̃ has the form:

W̃ =e− � ( � T � � )H(Q, y)×
(
C ⊗ f

)
(x1, Q � )

(
C ⊗ f

)
(x2, Q � ),

(4)

where

S(Q � , Q) =
∫ � 2

� 2
T

dµ̄2

µ̄2

[
ln
Q2

µ̄2
A
(
α � (µ̄)

)
+B

(
α � (µ̄)

)]
, (5)
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and
(
C ��� ⊗ f �����

1

)
(x1, µ) =

∫ 1

�
1

dξ1
ξ1

C ��� (
x1

ξ1
, Q � )f �����

1
(ξ1, Q � ). (6)

H is a function that describes the hard scattering, and
A, B, and C are calculated perturbatively in powers
of α � :

(A,B,C) =

∞∑
� =0

(
α � (µ)

π

) �

(A,B,C)( � )

(the first non–zero terms in the expansion of A and
B are for n = 1). The functions C( � ) are the Wilson
coefficients, and are responsible for the change in the
total production cross section at higher orders. In fact,
(C ⊗ f) is simply a redefinition of the parton distri-
bution function obtained by convoluting the standard
ones with an ultraviolet–safe function.

Ignoring Y and other kinematical dependence,
Eq. (3) can be rewritten as:

dσ(h1h2 →WX)

dQ2� = σ1

(
d

dQ2�

[
e− � ( � T � � ) R

])
, (7)

where

R =
(C ⊗ f) (x1, Q � ) (C ⊗ f) (x2, Q � )

(C ⊗ f) (x1, Q) (C ⊗ f) (x2, Q)
(8)

and

σ1 = κ

∫
dx1

x1
(C ⊗ f) (x1, Q) (C ⊗ f) (x2, Q).

The factor σ1 is the total cross section to a fixed order,
while the rest of the function yields the probability that
the W–boson has a transverse momentum Q � .

At leading order, the expression for the production
of an on–shell W–boson simplifies considerably to:

dσ(h1h2 →WX)

dQ2� =

σ0
d

dQ2�

(
e− � ( � T � � ) f(x1, Q � )f(x2, Q � )

f(x1, Q)f(x2, Q)

)
, (9)

σ0 = κ

∫
dx1

x1
f(x1, Q)f(x2, Q),

where κ contains physical constants and we ignore
the function Y for now. The expression contains
two factors, the total cross section at leading order
σ0, and a cumulative probability function in Q2� that
describes the transverse momentum of the W–boson.
The term e− � �

2f(x,Q � )/f(x,Q) is of the same form
as the Sudakov form factor of Eq. (2) and, hence, to
that of Eq. (1).

2.4. A modified showering algorithm
The primary result of this analysis is to exploit

the expression for the differential cross section, which
has the form of a leading order cross section times a
backwards evolution, to incorporate NLO corrections
to the parton shower. We generalize the function
∆(t)/f(x, t)×f(x, t′)/∆(t′) of the standard backwards

showering algorithm to
√
W̃ (the square root appears

because we are considering the evolution of each parton
line individually).

To implement this modification in a numerical pro-
gram, like PYTHIA, we need to provide the new, mod-
ified PDF (mPDF) based on the Wilson coefficients.

At leading order, the only Wilson coefficient is C
(0)
� � =

δ � � δ(1 − z), and we reproduce exactly the standard
showering formulation. For W–boson production at
NLO, the Wilson coefficients C are:

C
(1)�	� = δ �	�

{
2

3
(1− z) +

1

3
(π2 − 8)δ(1− z)

}
, (10)

C
(1)��
 =

1

2
z(1− z). (11)

To NLO, the convolution integrals become:

(C ⊗ f � ) (x, µ) = f � (x, µ)

(
1 +

α � (µ)

π

1

3
(π2 − 8)

)

+
α � (µ)

π

∫ 1

�

dz

z

[
2

3
(1− z)f � (x/z, µ)

+
1

2
(1− z)f 
 (x/z, µ)

]
,

and f 
 (x, µ) is unchanged. The first term gives the
contribution of an unevolved parton to the hard scat-
tering, while the other two contain contributions from
quarks and gluons with higher momentum fractions
that split q → qg and g → qq̄, respectively.

We are assuming that the Sudakov form factor
used in the analytic expressions and in the SMC are
equivalent. In fact, the integration over the quark
splitting function in ∆(Q) yields an expression similar
to the analytic Sudakov:

∫ 1− � m

� m
dzC �

(
1 + z2

1− z

)
=

C �

(
ln

[
1− z �

z �

]2

− 3/2(1− 2z � )

)

' A(1) ln(Q2/Q2� ) +B(1), (13)

where z � = � T

( � + � T ) is an infrared cutoff, terms

of order z � and higher are neglected, and the z
dependence of the running coupling has been ignored
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[21]. Note that the coefficients A(1) (C � ) and B(1)

(−3/2C � ) are universal to qq̄ annihilation into a color
singlet object, just as the showering Sudakov form
factor only knows about the partons and not the
details of the hard scattering. For gg fusion, only the
coefficient A(1) (3) is universal. In general, at higher
orders, the analytic Sudakov is sensitive to the exact
hard scattering process.

While the Sudakov form factors are similar, there is
no one–to–one correspondence. First, the Q � –space
Sudakov form factor is expressed directly in terms
of the Q � of the heavy boson, while, in the SMC’s,
the final Q � is built up from a series of branchings.
Secondly, the integral on the left of Eq. (13) is positive
(provided that z � < 1

2 ), while the analytic expression
on the right can become negative. This is disturbing,
since it means sub-leading logarithms (proportional
to B) are dominating leading ones. In the exact
SMC Sudakov, the kinematic constraints guarantee
that ∆(Q) < 1. In this sense, the Sudakov in the
SMC is a more exact implementation of the analytic
one. Nonetheless, the agreement apparent between the
analytic and parton shower expressions is compelling
enough to proceed assuming the two Sudakov form
factors are equivalent.

2.5. Hard Emission Corrections
The SMC and resummation formalisms are opti-

mized to deal with kinematic configurations that have
logarithmic enhancements L. For large Q � ' Q,
there are no such enhancements, and a fixed order
calculation yields the most accurate predictions. The
region of medium Q � , however, is not suited to either
particular expansion, in α

�
� L

�
or α

�
� .

The problem becomes acute for SMC’s. In the
standard implementation of SMC’s, the highest Q �

is set by the maximum virtuality allowed, Q = M �

in our example, so that the region Q � ≥ Q is never
accessed. However, at Q � ≥ Q, the fixed order calcula-
tion is preferred and yields a non–zero result, so there
is a discontinuity between the two predictions. This
behavior does not occur in the analytic resummation
calculations, because contributions to the cross section
that are not logarithmically enhanced as Q � → 0
are added back order–by–order in α � . This procedure
corrects for the approximations made in deriving the
exponentiation of soft gluon emission. The correction
is denoted Y . If the coefficients A and B are calculated
to high–enough accuracy, one sees a relatively smooth
transition between Eq. (3) and the NLO prediction at
Q � = Q. In the Q � –space calculation, this matching
between the two calculations at Q � = Q is guaranteed

at any order. The function Y has the form

Y (Q � , Q, x1, x2) =

∫ 1

�
1

dξ1
ξ1

∫ 1

�
2

dξ2
ξ2

∞∑
� =1

[
α � (Q)

π

] �

f � (ξ1, Q)R
( � )
� � (Q � , Q,

x1

ξ1
,
x2

ξ2
) f � (ξ2, Q). (14)

For W or Z boson production, the a = q, b = q̄
component of R at first order in α � is

R
(1)� ¯� = C �

(t̂−Q2)2 + (û−Q2)2

t̂û
δ(ŝ+ t̂+ û−Q2)

− 1

Q2� P̂
� → � (z � )δ(1− z � )− (A↔ B). (15)

The invariants ŝ, t̂ and û are defined in terms of
z,Q,Q � :

t̂/Q2 = 1− 1/z �

√
1 +Q2� /Q2,

û/Q2 = 1− 1/z �

√
1 +Q2� /Q2.

(16)

The term in R proportional to the delta function
is simply the squared matrix element for the hard
emission, while the terms proportional to Q−2� are the

asymptotic pieces from W̃ .
We would like to include similar corrections into the

SMC. However, this is not entirely straightforward.
Though it is not obvious from Eq. (14), the (a = g, b =
q+permutations) components are negative for Q � <
Q, though the sum Y is positive. Retaining negative
weights in an intermediate part of the calculation
is not a problem in principle. We can artificially
force the negative weights to be positive, and then
include the correct sign of the weight when filling
histograms, for example. However, this would involve
some modification to the PYTHIA code used in this
study.

A pragmatic approach is to ignore the negative
weights entirely, and multiply the exact W+parton
cross sections by a factor so that their sum reproduces
the Q � distribution and normalization of the analytic
Y piece. For the Tevatron in Run I, we find that the
multiplicative factor fCOR = 1

2 (Q � /50)2×(1+Q � /25)
reproduces the correct behavior for Q � < 50 GeV.
For Q � ≥ 50 GeV, the uncorrected W+ parton cross
sections are employed. Since the matching between
the “resummed” and “fixed order” calculations is now
occurring at Q � = 50 GeV instead of Q � = M � ,
we further limit the maximum virtuality of showering
to 50 GeV. This is in accord with the fact that the
“resummed” part of the analytic calculation becomes
negative around Q � = 50 GeV. This choice does have
some effect on the overall normalization of the parton
showering component.
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At this point, it is useful to compare the scheme
outlined above to other approaches at improving the
showering algorithm. One scheme is based on phase–
space splitting of a NLO matrix element into a piece
with LO kinematics and another with exclusive NLO
kinematics [23,24]. The separation depends on an
adjustable parameter that splits the phase space. In
the approach of Ref. [23], the separation parameter
is tuned so that the contribution with LO kinematics
vanishes. The resultant showering of the term with ex-
clusive NLO kinematics can generate emissions which
are harder than the first “hard” emission, which is
not consistent. More seriously, physical observables
are sensitive to the exact choice of the separation
parameter (see the discussion in Ref. [22] regarding
Q

� ���� ). Furthermore, the separation parameter must be
retuned for different processes and different colliders.
This scheme is guaranteed to give the NLO cross
section before cuts, but does not necessarily generate
the correct kinematics.

The other scheme is to modify the showering to
reproduce the hard emission limit [25,26]. While this
can be accomplished, it does so at the expense of
transferring events from low Q � to high Q � . There
is no attempt to predict the absolute event rate,
but only to generate the correct event shapes. In
some implementations, the high scale of the showering
is increased to the maximum virtuality allowed by
the collider energy. This is contrary to the analytic
calculations, where the scale Q = M � , for example,
appears naturally (in the choice of constants C1, C2

and C3 which eliminate potentially large logarithms).
This scheme will generate the correct hard limit, but
will not generate the correct cross section in the soft
limit.

2.6. Numerical results
For our numerical results, we predict the Q � distri-

bution of W and Z bosons produced at the Tevatron
in Run I. The modified PDF (mPDF) was calculated
using CTEQ4M PDF’s. These distributions are in
good agreement with analytic calculations, but the
shape and overall normalization cannot be predicted
accurately by the standard showering algorithm. Some
of the alternative showering algorithms reproduce the
shape, but not the overall normalization. Secondly, we
discuss jet properties for the same processes, which
are not significantly altered from the predictions of
the standard showering algorithm. These cannot be
predicted by analytic calculations.

In Fig. 1(a), the transverse momentum of the W bo-
son (solid line) as predicted by the algorithm outlined
above is shown in comparison to DØ data[27] (crosses).
The theoretical distribution has been passed through

the CMS detector simulation.1 As in analytic calcula-
tions, the position of the peak in the Q � distribution
from parton showering depends on non–perturbative
physics [29]. In PYTHIA, this is implemented through
a Gaussian smearing of the transverse momentum of
the incoming partons. To generate this plot, we have
changed the default Gaussian width from .44 GeV to
2.0 GeV, which is more in accord with other analyses.
This is the value used in all subsequent results. Be-
cause of the necessity of reconstructing the missing E �

in W boson decays to leptons, the smearing of the Q �

distribution is significant, and the agreement between
the prediction and data is not a rigorous test of the
modified showering algorithm. Fig. 1(b) shows the
comparison of the CDF Drell–Yan data [28] near the
Z0 peak to the modified showering prediction. While
there is a problem with the overall normalization, the
shape agreement is very good. We note that there is
also a problem with the overall normalization of the
analytic resummation predictions.2

Given all the effort necessary to improve the shower-
ing, it is reasonable to ask if the similar results would
have been obtained by simply renormalizing the usual
predictions to the NLO rate, i.e. using PYTHIA but
applying a constant K–factor at the end. In W boson
production, the relative size of the Q � distributions
vary by as much as 10% in the important regions
of small and medium Q � . Of course, the effect is
much larger for the large Q � region where there is
almost no rate from the standard parton showering.
If one is worried about precision measurements or
is applying kinematic cuts that bias the large Q �

region, then standard parton showering can yield
misleading results. In most cases, however, it appears
to be perfectly reasonable to renormalize the parton
showering results to the total NLO cross section. We
have also checked if our new showering algorithm has
an impact on jet properties. For W and Z boson
production, there are only minor differences, which is
expected since the Wilson coefficients for W and Z
boson production are nearly unity. In general, we do
not expect any major changes from using the modified
PDF’s, since the showering depends on the ratio of
the modified PDF’s evaluated at two different scales,
which is not as sensitive to the overall normalization
of the PDF.

2.7. Conclusions
We have presented a modified, parton showering

algorithm that produces the total cross section and

1Special thanks go to Cecilia Gerber, for making the code
portable, and to Michael Seymour for explaining how to properly
use it.
2Csaba Balazs, private communication.
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Figure 1. (a) The prediction of the W boson transverse momentum distribution in Run I at the Tevatron (solid
line) compared to the DØ data. The prediction includes the effects of the modified parton distribution functions,
the correction to the hard scattering process, and a primordial k � of 2.0 GeV; (b) The prediction of the Z boson
transverse momentum distribution in Run I at the Tevatron (solid line) compared to the CDF data. The prediction
includes the effects of the modified parton distribution functions, the correction to the hard scattering process, and
a primordial k � of 2.0 GeV.

the event shapes beyond the leading order. These
modifications are based on theQ � –space resummation.
The parton showering itself is modified by using a new
PDF (called mPDF) which encodes some information
about the hard scattering process. Simultaneously,
the explicit, hard emission is included, but only after
subtracting out the contribution already generated
by the showering: this correction is called Y . The
presence of Y yields a smooth transition from the
parton showering to single, hard emission. We mod-
ified the PYTHIA Monte Carlo to account for these
corrections, and presented comparisons with Run I W
and Z boson data.

The scheme works well for the cases considered in
this study, and the correct cross sections, transverse
momentum distributions, and jet properties are gener-
ated. We have compared our kinematic distributions
to the case when the results of the standard showering
are multiplied by a constant K–factor to reproduce the
NLO cross section. We find variations on the order of
10% for small and medium transverse momentum.

There are several effects which still need study. We
have not included the exact distributions for the decay
of the leptons [30] for W and Z production, which

are resummed differently. It is straightforward to
include such effects. In the theoretical discussion and
numerical results, we have focussed on initial state
radiation, but our results should apply equally well for
final state radiation. The situation is certainly simpler,
since final state radiation does not require detailed
knowledge of the fragmentation functions. Also, the
case when color flows from the initial state to the final
state requires study. A resummed calculation already
exists for the case of deep inelastic scattering [31], and
much theoretical progress has been made for heavy
quark production [32]. We believe that the modified
showering scheme outlined in this study generalizes
beyond NLO, just as the analytic calculations can be
calculated to any given order. For example, we could
include hard W + 2 jet corrections [33] to Y . For
consistency, however, higher order terms (A and B)
may also need to be included in the Sudakov form
factor.

The modified PYTHIA subroutines used in this
study and an explanation of how to use them are
available at the following URL:
moose.ucdavis.edu/mrenna/shower.html.

Acknowledgements I thank C–P Yuan and
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3. Recent Progress in PYTHIA

by T. Sjöstrand

3.1. Introduction
A general-purpose generator in high-energy physics

should address a number of physics aspects, such as:

• the matrix elements for a multitude of hard
subprocesses of interest,

• the convolution with parton distributions to
obtain the hard-scattering kinematics and cross
sections,

• resonance decays that (more or less) form part of
the hard subprocess (such as W , Z, t or h),

• initial- and final-state QCD and QED show-
ers (or, as an alternative, higher-order matrix
elements, including a consistent treatment of
virtual-correction terms),

• multiple parton–parton interactions,

• beam remnants,

• hadronization,

• decay chains of unstable particles, and

• general utility and analysis routines (such as jet
finding).

However, even if a Monte Carlo includes all the physics
we currently know of, there is no guarantee that
not some important aspect of the physics is missing.
Certain assumptions and phenomenological models
inside the program are not well tested and will not
necessarily hold when extrapolated to different energy
regimes. For example, the strong-interaction dynamics
in QCD remains unsolved and thereby unpredictable
in an absolute sense.

The PYTHIA 6.1 program was released in March
1997, as a merger of JETSET 7.4, PYTHIA 5.7
[3] and SPYTHIA [34]. It addresses all of the
aspects listed above. The current subversion is
PYTHIA 6.136, which contains over 50,000 lines of
Fortran 77 code. The code, manuals and sample main
programs may be found at
http://www.thep.lu.se/∼torbjorn/Pythia.html .

The two other programs of a similar scope are
HERWIG[1] 3 and ISAJET[2] 4. For parton-level
processes, many more programs have been written.
The availability of several generators provides for use-
ful cross-checks and a healthy competition. Since the
physics of a complete hadronic event is very complex

3http://hepwww.rl.ac.uk/theory/seymour/herwig/
4ftp://penguin.phy.bnl.gov/pub/isajet

and only partially understood from first principles,
one should not prematurely converge on one single
approach.

3.2. PYTHIA 6.1 Main News
Relative to previous versions, the main news in

PYTHIA 6.1 includes

• a renaming of the old JETSET program ele-
ments to begin with PY, therefore now standard
throughout,

• new SUSY processes and improved SUSY simu-
lation relative to SPYTHIA, and new PDG codes
for sparticles,

• new processes for Higgs (including doubly-char-
ged in left–right symmetric models), technicolor,
. . . ,

• several improved resonance decays, including an
alternative Higgs mass shape,

• some newer parton distributions, such as CTEQ5
[35],

• initial-state showers matched to some matrix
elements,

• new options for final-state gluon splitting to a
pair of c/b quarks and modified modeling of
initial-state flavor excitation,

• an energy-dependent p⊥min in multiple interac-
tions,

• an improved modeling of the hadronization of
small-mass strings, of importance especially for
c/b, and

• a built-in package for one-dimensional histo-
grams (based on GBOOK).

Some of these topics will be further studied below.
Other improvements, of less relevance for pp colliders,
include

• improved modeling of gluon emission off c/b
quarks in e+e−,

• color rearrangement options for W+W− events,

• a Bose-Einstein algorithm expanded with new
options,

• a new alternative baryon production scheme [36],

• QED radiation off an incoming muon,

• a new machinery to handle real and virtual pho-
ton fluxes, cross sections and parton distributions
[37], and

• new standard interfaces for the matching to
external generators of two, four and six fermions
(and of two quarks plus two gluons) in e+e−.

The current list of over 200 different subprocesses
covers topics such as hard and soft QCD, heavy flavors,
DIS and γγ, electroweak production of γ∗/Z0 and W±

(singly or in pairs), production of a light or a heavy
Standard Model Higgs, or of various Higgs states in
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supersymmetric (SUSY) or left–right symmetric mod-
els, SUSY particle production (sfermions, gauginos,
etc.), technicolor, new gauge bosons, compositeness,
and leptoquarks.

Needless to say, most users will still find that their
particular area of interest is not as well addressed as
could be wished. In some areas, progress will require
new ideas, while lack of time and manpower is the
limiting factor in others.

3.3. Matching To Matrix Elements
The matrix-element (ME) and parton-shower (PS)

approaches to higher-order QCD corrections both have
their advantages and disadvantages. The former offers
a systematic expansion in orders of α � , and a pow-
erful machinery to handle multiparton configurations
on the Born level, but loop calculations are tough
and lead to messy cancellations at small resolution
scales. Resummed matrix elements may circumvent
the latter problem for specific quantities, but then do
not provide exclusive accompanying events. Parton
showers are based on an improved leading-log (almost
next-to-leading-log) approximation, and so cannot be
accurate for well separated partons, but they offer a
simple, process-independent machinery that gives a
smooth blending of event classes (by Sudakov form
factors) and a natural match to hadronization. It is
therefore natural to try to combine these descriptions,
so that ME results are recovered for widely separated
partons while the PS sets the subjet structure.

For final-state showers in Z0 → qq, corrections to
the showering were considered quite a while ago [38],
e.g. by letting the shower slightly overpopulate the qqg
phase space and then using a Monte Carlo veto tech-
nique to reduce down to the ME level. This approach
easily carries over to showers in other color-singlet
resonance decays, although the various relevant ME’s
have not all been implemented in PYTHIA so far.

A similar technique is now available for the descrip-
tion of initial-state radiation in the production of a
single color-singlet resonance, such as γ∗/Z0/W± [39].
The basic idea is to map the kinematics between the
PS and ME descriptions, and to find a correction factor
that can be applied to hard emissions in the shower
so as to bring agreement with the matrix-element
expression. Some simple algebra shows that, with
the PYTHIA shower kinematics definitions, the two
qq′ → gW± emission rates disagree by a factor

R � � ′→ 
 � (ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
t̂2 + û2 + 2m2� ŝ

ŝ2 +m4�
,

which is always between 1/2 and 1. The shower can
therefore be improved in two ways, relative to the
old description. Firstly, the maximum virtuality of

emissions is raised from Q2
max ≈ m2� to Q2

max = s,
i.e. the shower is allowed to populate the full phase
space. Secondly, the emission rate for the final (which
normally also is the hardest) q → qg emission on each
side is corrected by the factor R(ŝ, t̂) above, so as
to bring agreement with the matrix-element rate in
the hard-emission region. In the backwards evolution
shower algorithm [9], this is the first branching consid-
ered.

The other possible O(α � ) graph is qg → q′W±,
where the corresponding correction factor is

R � 
 → � ′ � (ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2 + 2m2� t̂

(ŝ−m2� )2 +m4�
,

which lies between 1 and 3. A probable reason for the
lower shower rate here is that the shower does not ex-
plicitly simulate the s-channel graph qg → q∗ → q′W .
The g → qq branching therefore has to be preweighted
by a factor of 3 in the shower, but otherwise the
method works the same as above. Obviously, the
shower will mix the two alternative branchings, and
the correction factor for a final branching is based on
the current type.

The reweighting procedure prompts some other
changes in the shower. In particular, û < 0 trans-
lates into a constraint on the phase space of allowed
branchings.

Our published comparisons with data on the W
p⊥ spectrum show quite a good agreement with this
improved simulation [39]. A worry was that an
unexpectedly large primordial k⊥, around 4 GeV, was
required to match the data in the low-p⊥ � region.
However, at that time we had not realized that the data
were not fully unsmeared. The required primordial k⊥
is therefore likely to drop by about a factor of two [40].

It should be noted that also other approaches to
the same problem have been studied recently. The
HERWIG one requires separate treatments in the
hard- and soft-emission regions [41]. Another, more
advanced PYTHIA-based one [42], also addresses the
next-to-leading order corrections to the total W cross
section, while the one outlined above is entirely based
on the leading-order total cross section. There is also
the possibility of an extension to Higgs production [43].

Summarizing, we now start to believe we can handle
initial- and final-state showers, with next-to-leading-
order accuracy, in cases where these can be separated
by the production of color singlet resonances — even if
it should be realized that much work remains to cover
the various possible cases. That still does not address
the big class of QCD processes where the initial-
and final-state radiation does not factorize. Possibly,
correction factors to showers could be found also
here. Alternatively, it may become necessary to start
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showers from given parton configurations of varying
multiplicity and with virtual-correction weights, as
obtained from higher-order ME calculations. So far,
PYTHIA only implements a way to start from a given
four-parton topology in e+e− annihilation, picking one
of the possible preceding shower histories as a way
to set constraints for the subsequent shower evolution
[44]. This approach obviously needs to be extended
in the future, to allow arbitrary parton configurations.
Even more delicate will be the consistent treatment of
virtual corrections [45], where much work remains.

3.4. Charm And Bottom Hadronization
Significant asymmetries are observed between the

production of D and D mesons in π−p collisions, with
hadrons that share some of the π− flavor content very
much favored at large x � in the π− fragmentation
region [46]. This behavior was qualitatively predicted
by PYTHIA; in fact, the predictions were for somewhat
larger effects than seen in the data. The new data has
allowed us to go back and take a critical look at the
uncertainties that riddle the heavy-flavor description
[47]. Many effects are involved, and we limit ourselves
here to mentioning only one.

A hadronic event can be subdivided into sets of
partons that form separate color singlets. These sets
are represented by strings, that e.g. stretch from a
quark end via a number of intermediate gluons to an
antiquark end. The string has a mass, which can be
calculated from the energy-momentum of its partons.
Three different mass regions for the strings may be
distinguished in the process of hadronization.

1. Normal string fragmentation. This is the ideal
situation, when each string has a large invariant
mass, and the standard iterative fragmentation
scheme [48] works well. In practice, this ap-
proach can be used for all strings with a mass
above a cut-off of a few GeV.

2. Cluster decay. If a string is produced with a small
invariant mass, then it is possible that only two-
body final states are kinematically accessible.
The traditional iterative Lund scheme is then
not applicable. We call such a low-mass string
a cluster, and treat it separately. In recent pro-
gram versions, the modeling has been improved
to give a smooth match onto the standard string
scheme in the high-cluster-mass limit.

3. Cluster collapse. This is the extreme case of
the above situation, where the string mass is so
small that the cluster cannot decay into even two
hadrons. It is then assumed to collapse directly
into a single hadron, which inherits the flavor
content of the string endpoints. The original
continuum of string/cluster masses is replaced

by a discrete set of hadron masses. Energy
and momentum then cannot be conserved inside
the cluster, but must be exchanged with other
objects within the local neighborhood. This
description has also been improved.

Because the mass of the charm and bottom par-
tons are not negligible in the fragmentation process,
the improved treatment of low-mass systems will
have relatively more impact on charm and bottom
hadronization. In general, flavor asymmetries are
predicted to be smaller for bottom than for charm,
and smaller at higher energies (except possibly at very
large rapidities). Therefore, we do not expect any
spectacular effects at the Tevatron. However, other
nontrivial features of fragmentation may persist at
higher energies, like a non-negligible systematic shift
between the rapidity of a heavy quark parton and that
of the hadron produced from it [47]. The possibility
of such effects should be considered whenever trying
to relate heavy flavor measurements to parton level
calculations.

3.5. Multiple Interactions
Because of the composite nature of hadrons, several

parton pairs may interact in a typical hadron–hadron
collision [49]. Over the years, evidence for this
mechanism has accumulated, such as the recent direct
observation by CDF [50]. However, the occurrence of
two hard interactions in one hadronic collision is just
the tip of the iceberg. In the PYTHIA model, most
interactions are at lower p⊥, where they are not visible
as separate jets but only contribute to the underlying
event structure. As such, they are at the origin of
a number of key features, like the broad multiplicity
distributions, the significant forward–backward multi-
plicity correlations, and the pedestal effect under jets.

Since the perturbative jet cross section is divergent
for p⊥ → 0, it is necessary to regularize it, e.g. by a
cut-off at some p⊥min scale. That such a regularization
should occur is clear from the fact that the incoming
hadrons are color singlets — unlike the colored partons
assumed in the divergent perturbative calculations —
and that therefore the color charges should screen each
other in the p⊥ → 0 limit. Also other damping
mechanisms are possible [51]. Fits to data typically
give p⊥min ≈ 2 GeV, which then should be interpreted
as the inverse of some color screening length in the
hadron.

One key question is the energy-dependence of p⊥min;
this may be relevant e.g. for comparisons of jet rates
at different Tevatron energies, and even more for any
extrapolation to LHC energies. The problem actually
is more pressing now than at the time of our original
study [49], since nowadays parton distributions are
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known to be rising more steeply at small x than the flat
xf(x) behavior normally assumed for small Q2 before
HERA. This translates into a more dramatic energy
dependence of the multiple-interactions rate for a fixed
p⊥min.

The larger number of partons also should increase
the amount of screening, as confirmed by toy simula-
tions [52]. As a simple first approximation, p⊥min is
assumed to increase in the same way as the total cross
section, i.e. with some power ε ≈ 0.08 [53] that, via
reggeon phenomenology, should relate to the behavior
of parton distributions at small x and Q2. Thus the
new default in PYTHIA is

p⊥min = (1.9 GeV)

(
s

1 TeV2

)0 � 08

.

3.6. Interconnection Effects
The widths of the W , Z and t are all of the order

of 2 GeV. A Standard Model Higgs with a mass above
200 GeV, as well as many supersymmetric and other
“Beyond the Standard Model” particles would also
have widths in the multi-GeV range. Not far from
threshold, the typical decay times τ = 1/Γ ≈ 0.1 fm�
τhad ≈ 1 fm. Thus hadronic decay systems overlap,
between a resonance and the underlying event, or
between pairs of resonances, so that the final state may
not contain independent resonance decays.

So far, studies have mainly been performed in the
context of W pair production at LEP2. Pragmatically,
one may here distinguish three main eras for such
interconnection:

1. Perturbative: this is suppressed for gluon ener-
gies ω > Γ by propagator/timescale effects; thus
only soft gluons may contribute appreciably.

2. Non-perturbative in the hadroformation process:
normally model-led by a color rearrangement be-
tween the partons produced in the two resonance
decays and in the subsequent parton showers.

3. Non-perturbative in the purely hadronic phase:
best exemplified by Bose–Einstein effects.

The above topics are deeply related to the unsolved
problems of strong interactions: confinement dyna-
mics, 1/N2

C effects, quantum mechanical interferences,
etc. Thus they offer an opportunity to study the
dynamics of unstable particles, and new ways to
probe confinement dynamics in space and time [54,55],
but they also risk to limit or even spoil precision
measurements.

It is illustrative to consider the impact of inter-
connection effects on the W mass measurements at
LEP2. Perturbative effects are not likely to give
any significant contribution to the systematic error,
〈δm � 〉 �

∼ 5 MeV [55]. Color rearrangement is not
understood from first principles, but many models

have been proposed to model effects [55–57], and
a conservative estimate gives 〈δm � 〉 �

∼ 40 MeV. For
Bose–Einstein again there is a wide spread in models,
and an even wider one in results, with about the same
potential systematic error as above [58,59,57]. The
total QCD interconnection error is thus below m �

in absolute terms and 0.1% in relative ones, a small
number that becomes of interest only because we aim
for high accuracy.

A study of e+e− → tt → bW+bW− → bb`+ν � `′−ν′�
near threshold gave a realistic interconnection uncer-
tainty of the top mass of around 30 MeV, but also
showed that slight mistreatment of the combined color
and showering structure could blow up this error by
a factor of ten [60]. For hadronic top decays, errors
could be much larger.

The above numbers, when applied to hadronic
physics, are maybe not big enough to cause an im-
mediate alarm. The addition of a colored underlying
event — with a poorly-understood multiple-interaction
structure as outlined above — has not at all been
considered so far, however, and can only make matters
worse in hadronic physics than in e+e−. This is clearly
a topic for the future, where we should be appropri-
ately humble about our current understanding, at least
when it comes to performing precision measurements.

QCD interconnection may also be at the root of
a number of other, more spectacular effects, such as
rapidity gaps and the whole Pomeron concept [61], and
the unexpectedly large rate of quarkonium production
[62].

3.7. The Future: On To C++
Finally, a word about the future. PYTHIA continues

to be developed. On the physics side, there is a
need to increase the support given to different physics
scenarios, new and old, and many areas of the general
QCD machinery for parton showers, underlying events
and hadronization require further improvements, as we
have seen.

On the technical side, the main challenge is a
transition from Fortran to C++, the language of choice
for Run II (and LHC). To address this, the PYTHIA 7
project was started in January 1998, with L. Lönnblad
bearing the main responsibility. A similar project, but
more ambitious and better funded, is now starting
up for HERWIG, with two dedicated postdoc-level
positions and a three-year time frame.

For PYTHIA, what exists today is a strategy
document [63], and code for the event record, the
particle object, some particle data and other data base
handling, and the event generation handler structure.
All of this is completely new relative to the Fortran
version, and is intended to allow for a much more
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general and flexible formulation of the event gener-
ation process. The first piece of physics, the string
fragmentation scheme, is being implemented by M.
Bertini, and is nearing completion. The subprocess
generation method is being worked on for the simple
case of e+e− → Z0 → qq. The hope is to have a “proof
of concept” version soon, and some of the current
PYTHIA functionality up and running by the end of
2000. It will, however, take much further effort after
that to provide a program that is both more and better
than the current PYTHIA 6 version. It is therefore
unclear whether PYTHIA 7 will be of much use during
Run II, except as a valuable exercise for the future.

4. A Comparison of the Predictions from
Monte Carlo Programs and Transverse Mo-
mentum Resummation

by C. Balázs, J. Huston, I. Puljak, S. Mrenna

4.1. Introduction
Monte Carlo programs including parton showering,

such as PYTHIA[3], HERWIG[1] and ISAJET[2],
are commonly used by experimentalists, both as a way
of comparing experimental data to theoretical predic-
tions, and also as a means of simulating experimental
signatures in kinematic regimes for which there is no
experimental data (such as that appropriate to the
LHC). The final output of the Monte Carlo programs
consists of the 4-vectors of a set of stable particles (e.g.,
e, µ, π, γ); this output can either be compared to recon-
structed experimental quantities or, when coupled with
a simulation of a detector response, can be directly
compared to raw data taken by the experiment, and/or
passed through the same reconstruction procedures as
the raw data. In this way, the parton shower programs
can be more useful to experimentalists than analytic
calculations performed at high orders in perturbation
theory. Indeed, almost all of the physics plots in
the ATLAS physics TDR [108] involve comparisons to
PYTHIA(version 5.7).

Here, we are concerned with the predictions of
parton shower Monte Carlo programs and those from
certain analytic calculations which resum logarithms
associated with the transverse momentum of partons
initiating the hard scattering. Most analytic cal-
culations of this kind are either based on or origi-
nate from the formalism developed by J. Collins, D.
Soper, and G. Sterman (CSS), which we choose as
the analytic “benchmark” of this section. Both the
parton showering and analytic calculations describe
the effects of multiple soft gluon emission from the
incoming partons, which can have a profound effect
on the kinematics of gauge or Higgs bosons and their
decay products produced in hadronic collisions. This

may have an impact on the signatures of physics
processes at both the trigger and analysis levels, and
thus it is important to understand the reliability of
such predictions. The best method for testing the
reliability is a direct comparison of the predictions
to experimental data. If no experimental data is
available, then some understanding of the reliability
may by gained by simply comparing the predictions of
different calculational methods.

4.2. Parton Showering and Resummation
Parton showering is the backwards evolution of an

initial hard scattering process, involving only a few
partons at a high scale Q2

max reflecting large virtuality,
into a complicated, multi-parton configuration at a
much lower scaleQ2

min typical of hadronic binding ener-
gies. In practice, one does not calculate the probability
of arriving at a specific multi-parton configuration
all at once. Instead, the full shower is constructed
in steps, with evolution down in virtuality Q2 with
no parton emission, followed by parton emission, and
then a further evolution downward with no emission,
etc., until the scale Q2

min is reached. The essential
ingredient for this algorithm is the probability of
evolving down in scale with no parton emission or
at least no resolvable parton emission. This can be
derived from the DGLAP equation for the evolution
of parton distribution functions. One finds that the
probability of no emission P equals 1−exp(−S), where
S is the Sudakov form factor, a function of virtuality
and the momentum fraction x carried by a parton.

A key ingredient in the parton showering algorithm
is the conservation of energy-momentum at every step
in the cascade. The transverse momentum of the
final system partly depends on the opening angle
between the mother and daughter partons in each
emission. Furthermore, after each emission, the entire
multi-parton system is boosted to the center-of-mass
frame of the two virtual partons, until at the end of the
shower one is left with two primordial partons which
are on the mass shell and essentially parallel with the
incoming hadrons. These boosts also influence the final
transverse momentum.

Parton showering resums primarily the leading log-
arithms – those resummed by the DGLAP equations
– which are universal, i.e. process independent, and
depend only on the given initial state. In this lies
one of the strengths of the parton shower approach,
since it can be incorporated into a wide variety of
physical processes. An analytic calculation, in compar-
ison, can resum many other types of potentially large
logarithms, including process dependent ones. For
example, the CSS formalism in principle sums all of the
logarithms with Q2/p2� in their arguments, where, for
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the example of Higgs boson production, Q is the four
momentum of the Higgs boson and p � is its transverse
momentum. All of the “dangerous logs” are included in
the Sudakov exponent, which can be written in impact
parameter (b) space as:

S(Q, b) =

∫ � 2

1
� �

2

dµ2

µ2

[
A (α � (µ)) ln

(
Q2

µ2

)
+B (α � (µ))

]
,

with the A and B functions being free of large
logarithms and calculable in fixed–order perturbation
theory:

A (α � (µ̄)) =

∞∑
� =1

(
α � (µ̄)

π

) �

A( � ),

B (α � (µ̄)) =
∞∑

� =1

(
α � (µ̄)

π

) �

B( � ).

(17)

These functions contain an infinite number of co-
efficients, with the A( � ) being universal to a given
initial state, while the B( � ) are process dependent. In
practice, the number of towers of logarithms included
in the Sudakov exponent depends on the level to
which a fixed order calculation was performed for a
given process. For example, if only a next-to-leading
order calculation is available, only the coefficients A(1)

and B(1) can be included. If a NNLO calculation is
available, then A(2) and B(2) can be extracted and
incorporated into a resummation calculation, and so
on. This is the case, for example, for Z0 boson
production. So far, only the A(1), A(2) and B(1)

coefficients are known for Higgs production, but the
calculation of B(2) is in progress [109]. If we try to
interpret parton showering in the same language, then
we can say that the parton shower Sudakov exponent
always contains a term analogous to A(1). It was shown
in Reference [110] that a suitable modification of the
Altarelli-Parisi splitting function, or equivalently the
strong coupling constant α � , also effectively approxi-
mates the A(2) coefficient.5

In contrast with parton showering, analytic resum-
mation calculations integrate over the kinematics of
the soft gluon emission, with the result that they are
limited in their predictive power. While the parton
shower maintains an exact treatment of the branching
kinematics, the original CSS formalism imposes no
kinematic penalty for the emission of the soft gluons,
although an approximate treatment of this can be
incorporated into a numerical implementation, like
ResBos [111]. Neither parton showering nor ana-
lytic resummation reproduces kinematic configurations
where one hard parton is emitted at large p � . In

5This is rigorously true only for the high parton x or
√
τ region.

the parton shower, matrix element corrections can be
imposed [39,41], while, in the analytic resummation
calculation, matching is necessary.

With the appropriate input from higher order cross
sections, a resummation calculation has the corre-
sponding higher order normalization and scale depen-
dence. The normalization and scale dependence for
the Monte Carlo, though, remains that of a leading
order calculation – though see Ref. [42] and the related
contribution to these proceedings for an idea of how to
include these at NLO. The parton showering occurs
with unit probability after the hard scattering, so it
does not change the total cross section.6

Given the above discussion, one quantity which
should be well-described by both calculations is the
shape of the transverse momentum (p � ) distribution of
the final state electroweak boson in a subprocess such
as qq → WX , ZX or gg → HX , where most of the
p � is provided by initial state parton showering. The
parton showering supplies the same sort of transverse
kick as the soft gluon radiation in a resummation
calculation. Indeed, very similar Sudakov form factors
appear in both approaches, with the caveats about the
A( � ) and B( � ) terms mentioned previously.

At a point in its evolution corresponding to a
virtuality on the order of a few GeV, the parton shower
is stopped and the effects of gluon emission at softer
scales must be parameterized and inserted by hand.
Typically, a Gaussian probability distribution function
is used to assign an extra “primordial” k � to the
primordial partons of the shower (the ones which are
put on the mass shell at the end of the backwards
showering). In PYTHIA, the default is a constant
value of k � . Similarly, there is a somewhat arbitrary
division between perturbative and non-perturbative
regions in a resummation calculation. Sometimes
the non-perturbative effects are also parametrized by
Gaussian distributions in b orQ � space. In general, the
value for the non-perturbative 〈k � 〉 needed in a Monte
Carlo program will depend on the particular kinemat-
ics being investigated. In the case of the resummation
calculation the non-perturbative physics is determined
from fits to fixed target data and then automatically
evolved to the kinematic regime of interest.

A value for the average non-perturbative k � of
greater than 1 GeV does not imply that there is an
anomalous intrinsic k � associated with the parton
size; rather this amount of 〈k � 〉 needs to be supplied
to provide what is missing in the truncated parton

6Technically, one could add the branching for q → q+Higgs in
the shower, which would have the capability of increasing some-
what the Higgs cross section; however, the main contribution to
the higher order K-factor comes from the virtual corrections and
the ‘Higgs Bremsstrahlung’ contribution is negligible.
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shower. If the shower is cut off at a higher virtuality,
more of the “non-perturbative” k � will be needed.

4.3. Z0 Boson Production at the Tevatron
The 4-vector of a Z0 boson, and thus its transverse

momentum, can be measured with great precision in
the e+e− decay mode. Resolution effects are relatively
minor and are easily corrected for. Thus, the Z0

p � distribution is a great testing ground for both
the resummation and Monte Carlo formalisms for soft
gluon emission. The corrected p � distribution for Z0

bosons in the low p � region for the CDF experiment7

is shown in Figure 2, compared to both the resummed
prediction from ResBos, and to two predictions from
PYTHIA (version 6.125). One PYTHIA prediction uses
the default (rms)8 value of intrinsic k � of 0.44 GeV and
the second a value of 2.15 GeV per incoming parton.9

The latter value was found to give the best agreement
between PYTHIA and the data.10 All of the predictions
use the CTEQ4M parton distributions [112]. The shift
between the two PYTHIA predictions at low p � is
clearly evident. As might have been expected, the high
p � region (above 10 GeV) is unaffected by the value
of the non-perturbative k � . Note the k � imparted to
the incoming partons at their lowest virtuality, Q0, is
greatly reduced in its effect on the Z0 p � distribution.
This dilution arises because the center-of-mass energy
of the “primordial” partons is typically much larger
than that of the original hard scattering. Therefore,
the transverse β of the boost applied to the Z0 boson
to transform it to the frame where the “primordial”
partons have transverse momentum k � is small.

As an exercise, one can transform the resummation
formula in order to bring it to a form where the non-
perturbative function acts as a Gaussian type smearing
term. Using the Ladinsky-Yuan parameterization [114]
of the non-perturbative function in ResBos leads to
an rms value for the effective k � smearing parameter,
for Z0 production at the Tevatron, of 2.5 GeV. This
is similar to that needed for PYTHIA and HERWIG to
describe the Z0 production data at the Tevatron.

In Figure 2, the normalization of the resummed
prediction has been rescaled upwards by 8.4%. The
PYTHIA prediction was rescaled by a factor of 1.3-1.4
(remember that this is only a leading order compari-
son) for the shape comparison.

7We thank Willis Sakumoto for providing the figures for Z0

production as measured by CDF
8For a Gaussian distribution, krmsT = 1.13〈kT 〉.
9A previous publication [39] indicated the need for a substan-
tially larger non-perturbative 〈kT 〉, of the order of 4 GeV for
the case of W production at the Tevatron. The data used in the
comparison, however, were not corrected for resolution smearing,
a fairly large effect for the case of W → eν production and decay.
10A similar conclusion has been reached for comparisons of the
CDF Z0 pT data with HERWIG. [113]

Figure 2. The Z0 p � distribution (at low p � ) from
CDF for Run 1 compared to predictions from ResBos
and from PYTHIA. The two PYTHIA predictions use the
default (rms) value for the non-perturbative k � (0.44
GeV) and the value that gives the best agreement with
the shape of the data (2.15 GeV).

As stated previously, the resummed prediction cor-
rectly describes the shape of the Z0 p � distribution at
low p � , although there is still a noticeable difference
in shape between the Monte Carlo and the resummed
prediction. It is interesting to note that if the process
dependent coefficients (B(1) and B(2)) were not incor-
porated into the resummation prediction, the result
would be an increase in the height of the peak and a
decrease in the rate between 10 and 20 GeV, leading to
a better agreement with the PYTHIA prediction [115].

The PYTHIA and ResBos predictions both describe
the data well over a wider p � range than shown in the
figure. Note especially the agreement of PYTHIA with
the data at high p � , made possible by explicit matrix
element corrections (from the subprocesses qq → Z0g
and gq → Z0q) to the Z0 production process.11

11Slightly different techniques are used for the matrix element
corrections by PYTHIA [39] and by HERWIG [41]. In PYTHIA,
the parton shower probability distribution is applied over the
whole phase space and the exact matrix element corrections are
applied only to the branching closest to the hard scatter. In
HERWIG, the corrections are generated separately for the regions
of phase space unpopulated by HERWIG (the ‘dead zone’) and the
populated region. In the dead zone, the radiation is generated
according to a distribution using the first order matrix element
calculation, while the algorithm for the already populated region
applies matrix element corrections whenever a branching is
capable of being ‘the hardest so far’.
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4.4. Diphoton Production
Most of the comparisons between resummation cal-

culations/Monte Carlos and data have been performed
for Drell-Yan production, i.e. qq initial states. It is
also interesting to examine diphoton production at the
Tevatron, where a large fraction of the contribution
at low diphoton mass is due to gg scattering. The
prediction for the di-photon k � distribution at the
Tevatron, from PYTHIA (version 6.122), is shown in
Figure 3, using the experimental cuts applied in the
CDF analysis [116].
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Figure 3. A comparison of the PYTHIA predictions
for di-photon production at the Tevatron for the two
different subprocesses, qq and gg. The same cuts are
applied to PYTHIA as in the CDF di-photon analysis.

It is interesting to note that about half of the
di-photon cross section at the Tevatron is due to the
gg subprocess, and that the di-photon p � distribution
is noticeably broader for the gg subprocess than the qq
subprocess. The gg subprocess predictions in ResBos
agree well with those from PYTHIA while the qq p �

distribution is noticeably broader in ResBos. The
latter behavior is due to the presence of the Y piece

(fixed-order corrections) in ResBos at moderate p � ,
and the matching of the qq cross section to the fixed
order qq → γγg at high p � . The corresponding matrix
element correction is not in PYTHIA. It is interesting
to note that the PYTHIA and ResBos predictions for
gg → γγ agree in the moderate p � region, even though
the ResBos prediction has the Y piece present and
is matched to the matrix element piece gg → γγg
at high p � , while there is no such matrix element
correction for PYTHIA. This shows that the Y piece
correction is not important for the gg subprocess,
which is the same conclusion that was reached in
Ref. [117]. This is probably a result of steep decline in
the gg parton-parton with increasing partonic center of
mass energy,

√
ŝ. This falloff tends to suppress the size

of the Y piece since the production of the di-photon
pair at higher p � requires larger x1, x2 values. In
the default CSS formalism, there is no such kinematic
penalty in the resummed piece since the soft gluon
radiation comes for “free.” (Larger x1 and x2 values
are not required.)

A comparison of the CDF di-photon data to NLO
[118] and resummed (ResBos) QCD predictions has
been performed, but the analysis is still in progress,
so the results are not presented here. The transverse
momentum distribution, in particular, is sensitive to
the effects of the soft gluon radiation and better agree-
ment can be observed with the ResBos prediction than
with the NLO one. A much more precise comparison
with the effects of soft gluon radiation will be possible
with the 2 fb−1 or greater data sample that is expected
for both CDF and DØ in Run 2.

4.5. Higgs Boson Production
A comparison of the two versions of PYTHIA and

of ResBos is shown in Figure 4 for the case of the
production of a Higgs boson with mass 100 GeV at the
Tevatron with center-of-mass energy of 2.0 TeV. The
same qualitative features are observed at the LHC: the
newer version of PYTHIA agrees better with ResBos in
describing the low p � shape, and there is a falloff at
high p � unless the hard scale for showering is increased.
The default (rms) value of the non-perturbative k �

(0.44 GeV) was used for the PYTHIA predictions. Note
that the peak of the resummed distribution has moved
to p � ≈ 7 GeV (compared to about 3 GeV for Z0

production at the Tevatron). This is due primarily
to the larger color factors associated with initial state
gluons (C � = 3) rather than quarks (C � = 4/3).

The newer version of PYTHIA agrees well with ResBos
at low to moderate p � , but falls below the resummed
prediction at high p � . This is easily understood:
ResBos switches to the NLO Higgs + jet matrix
element at high p � while the default PYTHIA can
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generate the Higgs p � distribution only by initial
state gluon radiation, using as default a maximum
scale equal to the Higgs boson mass. High p � Higgs
boson production is another example where a 2 → 1
Monte Carlo calculation with parton showering can
not completely reproduce the exact matrix element
calculation without the use of matrix element correc-
tions. The high p � region is better reproduced if the
maximum virtuality Q2� � � is set equal to the collider
center-of-mass energy, s, rather than subprocess ŝ.
This is equivalent to applying the parton shower to
all of phase space. However, the consequence is that
the low p � region is now depleted of events, since the
parton showering does not change the total production
cross section. The appropriate scale to use in PYTHIA

(or any Monte Carlo) depends on the p � range to
be probed. If matrix element information is used
to constrain the behavior, the correct high p � cross
section can be obtained while still using the lower
scale for showering. The incorporation of matrix
element corrections to Higgs production (involving the
processes gq → qH , qq → gH , gg → gH) is the next
logical project for the Monte Carlo experts, in order to
accurately describe the high p � region.

The older version of PYTHIA produces too many
Higgs events at moderate p � (in comparison to Res-
Bos) at both the Tevatron and the LHC. Two changes
have been implemented in the newer version. The first
change is that a cut is placed on the combination of z
and Q2 values in a branching: û = Q2/z− ŝ(1−z) < 0,
where ŝ refers to the subsystem of the hard scattering
plus the shower partons considered to that point.
The association with û is relevant if the branching is
interpreted in terms of a 2 → 2 hard scattering. This
requirement is not fulfilled when the Q2 value of the
space-like emitting parton is little changed and the z
value of the branching is close to unity. This affects
mainly the hardest emission (largest Q2). The net
result of this requirement is a substantial reduction
in the total amount of gluon radiation [119]. Such
branchings are kinematically allowed, but since matrix
element corrections would assume initial state partons
to have Q2 = 0, a non-physical û results (and thus
no possibility to impose matrix element corrections).
The correct behavior is beyond the predictive power of
leading log Monte Carlos.

In the second change, the parameter for the min-
imum gluon energy emitted in space-like showers is
modified by an extra factor roughly corresponding to
the 1/γ factor for the boost to the hard subprocess
frame [119]. The effect of this change is to increase
the amount of gluon radiation. Thus, the two effects
are in opposite directions but with the first effect being
dominant.
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Figure 4. A comparison of predictions for the Higgs
p � distribution at the Tevatron from ResBos and from
two recent versions of PYTHIA. The ResBos and PYTHIA

predictions have been normalized to the same area.

This difference in the p � distribution between the
two versions of PYTHIA could have an impact on the
analysis strategies for Higgs searches at the LHC.
For example, for the CMS detector, the higher p �

activity associated with Higgs production in version 5.7
would have allowed for a more precise determination
of the event vertex from which the Higgs (decaying
into two photons) originated. Vertex pointing with the
photons is not possible in CMS, and the large number
of interactions occurring with high intensity running
will mean a substantial probability that at least one of
the interactions will produce jets at low to moderate
E � . [120] In principle, this problem could affect the p �

distribution for all PYTHIA processes. In practice, the
effect has manifested itself only in gg initial states, due
to the enhanced branching probability.

As an exercise, an 80 GeV W and an 80 GeV Higgs
were generated at the Tevatron using PYTHIA5.7 [121].
A comparison of the distribution of values of û and
the virtuality Q for the two processes indicates a
greater tendency for the Higgs virtuality to be near the
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maximum value and for there to be a larger number of
Higgs events with positive û (than W events).

4.6. Comparison with HERWIG

The variation between versions 5.7 and 6.1 of PYTHIA
gives an indication of the uncertainties due to the types
of choices that can be made in Monte Carlos. The
requirement that û be negative for all branchings is a
choice rather than an absolute requirement. Perhaps
the better agreement of version 6.1 with ResBos is
an indication that the adoption of the û restrictions
was correct. Of course, there may be other changes
to PYTHIA which would also lead to better agreement
with ResBos for this variable.
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Figure 5. A comparison of predictions for the Higgs
p � distribution at the LHC from ResBos, two recent
versions of PYTHIA and HERWIG. The ResBos, PYTHIA
and HERWIG predictions have been normalized to the
same area.

Since there are a variety of choices that can be made
in Monte Carlo implementations, it is instructive to
compare the predictions for the p � distribution for
Higgs boson production from ResBos and PYTHIA with
that from HERWIG (version 5.6, also using the CTEQ4M

parton distribution functions). The HERWIG prediction
is shown in Figure 5 along with the PYTHIA and ResBos
predictions, all normalized to the ResBos prediction. 12

In all cases, the CTEQ4M parton distribution was
used. The predictions from HERWIG and PYTHIA 6.1
are very similar, with the HERWIG prediction matching
the ResBos shape somewhat better at low p � .

4.7. Non-perturbative k �

A question still remains as to the appropriate value
of non-perturbative k � to input in the Monte Carlos
to achieve a better agreement in shape, both at the
Tevatron and at the LHC. Figure 6 compares the
ResBos and PYTHIA predictions for the Higgs boson p �

distribution at the Tevatron. The PYTHIA prediction
(now version 6.1 alone) is shown with several values
of non-perturbative k � . Surprisingly, no difference is
observed between the predictions with the different
values of k � , with the peak in PYTHIA always being
somewhat below that of ResBos. This insensitivity can
be understood from the plots at the bottom of the two
figures which show the sum of the non-perturbative
initial state k � (k �

1+k �
2) at Q0 and at the hard

scatter scale Q. Most of the k � is radiated away,
with this effect being larger (as expected) at the
LHC. The large gluon radiation probability from a
gluon-gluon initial state (and the greater phase space
available at the LHC) lead to a stronger degradation
of the non-perturbative k � than was observed with Z0

production at the Tevatron.

4.8. Conclusions
An understanding of the signature for Higgs boson

production at either the Tevatron or LHC depends
upon the understanding of the details of soft gluon
emission from the initial state partons. This soft gluon
emission can be modeled either in a Monte Carlo or
in a k � resummation program, with various choices
possible in both implementations. A comparison of the
two approaches is useful to understand the strengths
and weaknesses of each. The data from the Tevatron
that either exists now, or will exist in Run 2, will be
extremely useful to test both approaches.
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5. MCFM: a parton-level Monte Carlo at NLO
Accuracy

by John Campbell and R.K. Ellis

12The normalization factors (ResBos/Monte Carlo) are PYTHIA

(both versions)(1.61) and HERWIG (1.76).

17



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40

gg → H + X at Tevatron
mH = 100 GeV, CTEQ4M, √s = 2 TeV

ResBos 98.07.14
PYTHIA 6.122, kT = 0.44 GeV

pT (GeV)

dσ
/d

p T
  (

pb
/G

eV
)

PYTHIA 6.122, kT = 4.0 GeV

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

Mean
RMS

  .2140
  .1556

kT1+kT2 (GeV)

a.
 u

.

primordial kT = 0.44 GeV

at Q0

at hard scattering

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

Mean
RMS

  1.964
  1.354

kT1+kT2 (GeV)

a.
 u

.

primordial kT = 4 GeV

at Q0

at hard scattering

Figure 6. (top) A comparison of the PYTHIA predic-
tions for the p � distribution of a 100 GeV Higgs at the
Tevatron using the default (rms) non-perturbative k �

(0.44 GeV) and a larger value (4 GeV), at the initial
scale Q0 and at the hard scatter scale. Also shown is
the ResBos prediction (bottom) The vector sum of the
intrinsic k � (k �

1+k �
2) for the two initial state partons

at the initial scale Q0 and at the hard scattering scale
for the two values of intrinsic k � .

5.1. Introduction
In Run II, experiments at the Tevatron will be

sensitive to processes occurring at the femtobarn level.
Of particular interest are processes which involve heavy
quarks, leptons and missing energy, since so many of
the signatures for physics beyond the standard model
produce events containing these features. We have
therefore written the program MCFM [123,79] which
calculates the rates for a number of standard model
processes. These processes are included beyond the
leading order in the strong coupling constant where
possible; in QCD this is the first order in which the nor-
malization of the cross sections is determined. Because
the program produces weighted Monte Carlo events,
we can implement experimental cuts allowing realistic
estimates of event numbers for an ideal detector con-

figuration. MCFM is expected to give more reliable
results than parton shower Monte Carlo programs,
especially in phase space regions with well separated
jets. On the other hand it gives little information
about the phase space regions which are dominated
by multiple parton emission. In addition, because the
final state contains partons rather than hadrons, a full
detector simulation cannot be performed directly using
the output of MCFM.

The processes already included in MCFM at NLO
are as follows (H1, H2 = p or p̄),

• H1 +H2 →W±

• H1 +H2 → Z

• H1 +H2 →W± + 1 jet

• H1 +H2 → Z + 1 jet

• H1 +H2 →W± +H

• H1 +H2 → Z +H

• H1 +H2 →W+W−

• H1 +H2 →W±Z

• H1 +H2 → ZZ

• H1 +H2 →W+ + g∗(→ bb̄), massless b-quarks

• H1 +H2 → Z + g∗(→ bb̄), massless b-quarks

• H1 +H2 → H →W+W−, ZZ or tt̄

• H1 +H2 → τ+ + τ− .

The decays of vector bosons and/or Higgs bosons are
included. We have also included the leptonic decays of
the τ -lepton. As described below the implementation
of NLO corrections requires the calculation of both the
amplitude for real radiation and the virtual corrections
to the Born level process. We have extensively used
the one loop results of Bern, Dixon, Kosower et al.
[124], [125] to obtain the virtual corrections to above
processes.

A future development path for the program would
be to include the following processes at NLO:

• H1 +H2 →W± + 2 jets

• H1 +H2 → Z + 2 jets .

In addition there are an number of processes which
we have included only at leading order. This restriction
to leading order is both a matter of expediency and be-
cause the theoretical framework for including radiative
corrections to processes involving massive particles is
not yet complete.
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• H1 +H2 → t+ t̄

• H1 +H2 → t+ t̄+ 1 jet

• H1 +H2 → t+ b̄

• H1 +H2 → t+ b̄+ 1 jet

• H1 +H2 → t+ t̄+H

• H1 +H2 → t+ t̄+ Z

H,Z and top quark decays are included.

5.2. General structure
In order to evaluate the strong radiative corrections

to a given process, we have to consider Feynman
diagrams describing real radiation, as well as the
diagrams involving virtual corrections to the tree level
graphs. The corrections due to real radiation are dealt
with using a subtraction algorithm[126] as formulated
by Catani and Seymour [127]. This algorithm is
based on the fact that the singular parts of the QCD
matrix elements for real emission can be singled out
in a process-independent manner. By exploiting this
observation, one can construct a set of counter-terms
that cancel all non-integrable singularities appearing
in real matrix elements. The NLO phase space
integration can then be performed numerically in four
dimensions.

The counter-terms that were subtracted from the
real matrix elements have to be added back and
integrated analytically over the phase space of the
extra emitted parton in n dimensions, leading to poles
in ε = (n− 4)/2. After combining those poles with the
ones coming from the virtual graphs, all divergences
cancel, so that one can safely perform the limit ε→ 0
and carry out the remaining phase space integration
numerically.

As an example of this procedure we consider the
production of an on-shell W boson decaying to a
lepton-antilepton pair.

q(p1) + q̄(p2)→W+(ν(p3) + e+(p4)),

p1 + p2 = p3 + p4, (p3 + p4)2 = M2� . (18)

In this case, the W boson rapidity distribution is
calculable analytically in O(α � ) [128,129]. Fig. 7 shows
the result calculated in the MS scheme. The virtual
corrections to (18) are of the Drell-Yan type and are
well known [128]. They are expressible as an overall
factor multiplying the lowest order matrix element
squared,

σV = σLO × α � C �

2π

(
4πµ2

Q2

) �
1

Γ(1− ε)
[
− 2

ε2
− 3

ε
− 6 + π2

]
(19)

Figure 7. The rapidity distribution for W+ production
in pp̄ collisions at

√
s = 2TeV.

and must be combined with the real radiation contribu-
tion. For example, gluon radiation from the qq̄ initial
state yields the subprocess

q(p1) + q̄(p2)→W (ν(p3) + e+(p4)) + g(p5),

p1 + p2 = p3 + p4 + p5. (20)

To eliminate the singular part of this subprocess, we
generate a counter event with the kinematics of the
2→ 2 process as follows

q(x � p1) + q̄(p2)→W (ν(p̃3) + e+(p̃4)),

x � p1 + p2 = p̃3 + p̃4 (21)

where a Lorentz transformation has been performed on
all j final state momenta

p̃
�
� = Λ

�

� p
�
� , j = 3, 4 (22)

such that p̃
�
� → p � for p5 collinear or soft. Thus

the energy of the emitted gluon p5 is absorbed by p1,
and the momentum components are absorbed by the
transformation of the final state vectors. The phase
space has a convolution structure,

dΦ(3)(p5, p4, p3; p2, p1) =
∫ 1

0

dx dΦ(2)(p̃4, p̃3; p2, p1)× [dp5(p1, p2, x)]
(23)

where

[dp5(p1, p2, x)] =

d
�

p5

(2π)
� −1

δ+(p2
5)Θ(x)Θ(1− x)δ(x − x � ) (24)
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This phase space may be used to integrate out the
dipole term D15 � 2, which is chosen to reproduce the
singularities in the real matrix elements as the gluon
(5) becomes soft or collinear to the quark (1),

D15 � 2 =
4πα � C � µ2 �

p1 · p5

(
2

1− x �
− 1− x �

)
(25)

Performing the integration yields,
∫ 1

0

dxD15 � 2 [dp5(p1, p2, x)] =

α � C �

2π

(
4πµ2

2p1 · p2

) �
1

Γ(1− ε) ×[
−1

ε
p � � (x) + δ(1− x)

(
1

ε2
+

3

2ε
− π2

6

)

+2(1 + x2)

[
log(1− x)

1− x

]

+

]
(26)

with the Altarelli-Parisi function p � � (x) given by

p � � (x) =
2

(1− x)+
− 1− x+

3

2
δ(1− x) (27)

In order to obtain the complete counter-term, one must
add the (identical) contribution from the dipole con-
figuration D25 � 1 that accounts for the gluon becoming
collinear with the anti-quark. In a more complicated
process, we would sum over a larger number of distinct
dipole terms involving partons both in the initial and
final states. In this simple case, we find the total
counter-term contribution to the qq̄ cross-section to be

σCT =
α � C �

2π

(
4πµ2

Q2

) �
1

Γ(1− ε) ×
[

−2

ε
p � � (x) + δ(1− x)

(
2

ε2
+

3

ε
− π2

3

)

−2p � � (x) logx+ 4(1 + x2)

[
log(1− x)

1− x

]

+

]

where each of these terms leads to a different type of
contribution in MCFM. The first term, proportional to
p � � (x), is canceled by mass factorization, up to some
additional finite (O(ε0)) pieces. The terms multiplying
the delta-function δ(1− x) manifestly cancel the poles
generated by the virtual graphs, given in equation (19),
leaving an additional π2 contribution. The remaining
terms, which don’t have the structure of the virtual
contribution, are collected together and added sepa-
rately in MCFM.

In Fig. 8 we have plotted the three contributions
to the W rapidity calculated using MCFM. The
three contributions are a) the contribution of (real-
counterterm) [the lower curve], b) the contribution

Figure 8. The ratio of the contributions to the rapidity
distribution of W+ production

of leading order + virtual + integrated counter-term
[the upper-most curve] and c) the total contribution.
All three terms have been normalized to the O(α � )
rapidity distribution shown in Fig. 7. We see that
(b), the leading order term, combined with the virtual
correction and the results from the counterterm pro-
vides the largest contribution to the cross section. The
total contribution is a horizontal line at unity, showing
the agreement between MCFM and the analytically
calculated result. Only at the boundaries of the
phase space at large y can the contribution of the real
emission minus the counterterm become sizeable.

5.3. Examples of MCFM results
We first detail the input parameters used in our

phenomenological estimates. The electroweak theory is
specified by four numbers, M � ,M � , α(M � ), and G � ,
the values of which are given in Table 1, together with
other necessary constants. Other derived parameters
are e, g � and sin2 θ � which, when defined as below,
are effective parameters including the leading effects
of top quark loops[130]. We use the the first of the
MRS99 parton distributions[131] which has α � (M � ) =
0.1175.

e2 = 4πα(M � )

g2� = 4
√

2G � M2�

sin2 θ � =
e2

g2�
(28)

Table 2 shows the production cross sections for
di-boson production calculated using MCFM for pp̄
collisions at

√
s = 2 TeV and for pp collisions at√

s = 14 TeV. The next-to-leading order corrections
vary between approximately 30% and 50% of leading
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Table 1
Input parameters

M � ,Γ � 91.187, 2.49 GeV
M � ,Γ � 80.41, 2.06 GeV
m � ,Γ � 175, 1.4 GeV
α(M � ) 1/128.89
G � 1.16639× 10−5

sin2 θ � 0.228534483
V � � 0.97500
V � � 0.22220
V � � 0.22220
V � � 0.97500

Higgs mass (GeV) BR(H → bb̄)
100 0.8119
110 0.7697
120 0.6778
130 0.5254

Table 2
Diboson cross sections (in pb) at the Tevatron and the
LHC

√
s σ(W+W−) σ(W+Z) σ(W−Z) σ(ZZ)

2 TeV (pp̄) 12.2 2.02 1.75
14 TeV (pp) 103.6 27.2 17.7 16.7

order and are almost entirely due to the virtual graphs.
The numbers here are slightly different than the results
in [79], because of the different choices made both for
the input EW parameters and parton distributions as
detailed above.

Much effort has been devoted to the study of Higgs
production at the Tevatron at

√
s = 2 TeV. These

studies indicate that, given enough luminosity, a light
Higgs boson can be discovered at the Tevatron using
the associated production channels WH and ZH . In
this report we present results of an analysis that
incorporates as many of the backgrounds as possible
at next-to-leading order for the WH channel. Whilst
we use no detector simulation and do not attempt to
include non-physics backgrounds, the results presented
here can provide a normalization for more detailed
studies. This is of importance since more detailed
studies are often performed using shower Monte Carlo
programs which can give misleading results for well
separated jets.

In particular, we will consider the light Higgs case
(M � < 130 GeV) in the channel pp̄ → bb̄νe+. In
addition to the usual cuts on rapidity and transverse

momentum,

|y � |, |y �̄ | < 2 ,
|y � | < 2.5 ,

|p
�
� |, |p

�
�̄ | > 15 GeV ,

|p
�
� |, |p

�
� | > 20 GeV ,

(29)

we also impose isolation cuts,

R � �̄ , R � � , R � �̄ > 0.7 , (30)

as well as a cut on the scattering angle of the bb̄ system
[132] (the Higgs scattering angle) in the Collins-Soper
frame [133],

| cos θ � �̄ | < 0.8 . (31)

Note that imposing the cut on cos θ � �̄ requires knowl-
edge of the longitudinal component of a neutrino
momentum. Our results for the signal, backgrounds
and significance are shown in Table 3, where we use
ε � �̄ = 0.45 and integrate the cross-sections over a
bb̄ mass range appropriate for the Higgs mass under
consideration,

|M � −M � �̄ | <
√

2σ � , σ � = 0.1M � . (32)

From this table, one can see that, even with a fairly
restrictive set of cuts, the Wg∗ process in particular
provides a challenging background. This is further
emphasized in Figure 9, where the cross-sections for
M � = 110 GeV are presented in 5 GeV bins across
the entire m � �̄ spectrum. The signal, the two largest
backgrounds and the sum of all the backgrounds
including top quark production are plotted separately,
as well as the totals with and without the Higgs signal.
The sharp peak of the Higgs signal becomes only a
small shoulder in the total distribution.

5.4. Conclusions
We have introduced the program MCFM, which

calculates the rates for a number of standard model
processes that are particularly relevant in Run II.
These calculations are performed in fixed-order per-
turbation theory, mainly at next-to-leading order in
the strong coupling, and as such differ from other
approaches such as parton shower Monte Carlos. As
illustrations of the use of MCFM, we have presented
total di-boson cross-sections and a primitive study
(lacking detector effects and non-physics backgrounds)
of WH production as a search for a light Higgs. Such
calculations can be used to provide normalizations for
more detailed studies in the future.

6. Experimental handles on the backgrounds to
new physics searches

by Regina Demina

21



Table 3
Signal, backgrounds (in fb) and significance for the W -channel at

√
s = 2 TeV

M � [GeV] Scale 100 110 120 130
W±H(→ bb̄) m � 8.8 6.4 4.2 2.5

W±g∗(→ bb̄) (m � + 100 GeV)/2 25.7 22.7 18.5 15.5
W±Z(→ bb̄) (m � + 100 GeV)/2 6.7 4.3 2.0 1.0
t(→ bW+)t̄(→ b̄W−lept) 100 GeV 3.3 3.7 3.9 3.9

t(→ bW+)t̄(→ b̄W−hadr) 100 GeV 0.3 0.4 0.5 0.6
W±∗(t(→ bW+)b̄) 100 GeV 5.1 5.8 6.0 6.0
q′t(→ bW+) 100 GeV 0.3 0.4 0.5 0.6
Total B - 41.4 37.3 31.4 27.6
S/B - 0.21 0.17 0.13 0.09

S/
√
B - 1.37 1.05 0.75 0.48

Figure 9. Signal and backgrounds for WH. ‘top’
represents the sum of all the backgrounds including
a top quark.

6.1. Introduction
Significant work has been done in the course of the

SUSY/Higgs [64] and Strong Dynamics [65] Workshops
to understand the Tevatron discovery potential for
new physics. Several promising signatures have been
identified and the discovery reach has been estimated.
In these studies, it was assumed that the systematic
error on the signal and background normalization is
similar in size to the statistical error, which is about
10%. Thus, the systematic error of each individual
background process must be kept under 5%. Though it
is probably a reasonable assumption, this will not hap-
pen automatically and dedicated studies are needed to
achieve this goal. In this paper, we review the most
important backgrounds to new physics and ways to
estimate them in signal-depleted control samples.

6.2. New physics signatures
Associated vector boson and heavy flavor jets pro-

duction is probably the most promising signature for
new physics searches at the Tevatron. Standard
Model (SM) Higgs boson [66], Supersymmetry [67],
technicolor and topcolor [68] and even extra-dimension
[69] signatures may appear in these channels.

Tables 4 and 5, show examples of new physics
processes that can produce W + 2 jet and W + 3 or
more jet signatures. From the experimental point of
view, a “W” is usually a high p � lepton accompanied
by a significant missing energy (e.g. CDF Run I cuts
are P � (e, µ) > 20 GeV/c, /E � > 20 GeV [70]). In that
sense, the supersymmetric partner of W – χ̃+

1 – looks
like aW , except its transverse mass will be inconsistent
with the W hypothesis, but this will become obvious
only when significant statistics is accumulated. Some
models predict special features, like resonance behavior
in the bb̄ invariant mass, while others do not.

Table 6 presents new physics processes that can pro-
duce Z + 2 jet signatures. Here we assume that the Z
decays to a pair of leptons. Usually, a Z mass window
cut is applied. In that sense, the supersymmetric
partner of the Z – χ̃0

2 – looks like a Z in only some
regions of SUSY parameter space. If the Z decays to
a pair of neutrinos, it produces missing energy. In this
case, all the processes presented in Table 6 produce
a /E � + 2 jet signature. Table 7 shows additional
new physics processes that result in a /E � signature.
As we see, these channels are very important for new
physics searches, and the Standard Model backgrounds
to these signatures must be thoroughly understood
before any claims of discovery are made.

6.3. Backgrounds to new physics
The W (Z)bb̄ signature was studied in the course

of the SUSY/Higgs Workshop for the Higgs discovery
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# Process Model Special features
1 WH,H → bb̄ SM Higgs Resonance in M � �̄

2 ρ±� →W±π0� , π0� → bb̄ Technicolor Resonance in M � � �̄ and M � �̄

3 ρ0� →W±π∓� , π±� → cb̄ Technicolor Resonance in M � � �̄ and M � �̄

4 χ̃+
1 χ̃

0
2, χ̃

+
1 → `νχ̃0

1, χ̃
0
2 → bb̄χ̃0

1 SUSY M � (`/E � ) inconsistent with W

5 tt̄, t→ bW, t̄→ ˜̄tχ̃0
1,
˜̄t→ cχ̃0

1 SUSY M � (`/E � ) inconsistent with W

Table 4
Potential new physics signatures in the W + 2 jet channel. From the experimental point of view, a “W” is a high
p � lepton accompanied by significant missing energy (e.g., CDF cuts are p � (e, µ) > 20 GeV/c, /E � > 20 GeV). In
that sense, χ̃+

1 looks like a “W .”

# Process Model Special features

1 tt̄, t→ bW, t̄→ ˜̄tχ̃0
1,
˜̄t→ b̄χ̃−1 SUSY M � (`/E � ) inconsistent with W

2 t̃̃t̄, t̃→ bχ̃+
1 SUSY M � (`/E � ) inconsistent with W

3 t̃̃t̄, t̃→ b`ν̃ SUSY M � (`/E � ) inconsistent with W

4 g̃g̃, g̃ → t̃t̄ SUSY M � (`/E � ) inconsistent with W
5 Z ′(V8, η � )→ tt̄ Topcolor Resonance in M � �̄

Table 5
Potential new physics signatures in the W + 3 or more jet channel.

# Process Model Special features
1 ZH,H → bb̄ SM Higgs Resonance in M � �̄

2 ρ+� → Zπ+� , π+� → cb̄ Technicolor Resonance in M � � �̄ and M � �̄

3 χ̃+
1 χ̃

0
2, χ̃

+
1 → cs̄χ̃0

1, χ̃
0
2 → `+`−χ̃0

1 SUSY M � � inconsistent with Z, extra /E �

4 b̃˜̄b, b̃→ bχ̃0
1,
˜̄b→ b̄χ̃0

2, χ̃
0
2 → ``χ̃0

1 SUSY extra /E �

Table 6
Potential new physics signatures in the Z + 2 jet channel. From the experimental point of view, a “Z” is two high
p � leptons, usually with a Z mass window cut. In that sense, χ̃0

2 looks like a “Z” only in some regions of SUSY
parameter space.

# Process Model Special features

1 t̃̃t̄, t̃→ cχ̃0
1 SUSY 2 charm jets and /E �

1 b̃̃b̄, b̃→ bχ̃0
1 SUSY 2 bottom jets and /E �

3 LQ2LQ2, LQ2 → cν Leptoquarks 2 charm jets and /E �

3 LQ3LQ3, LQ3 → bν Leptoquarks 2 bottom jets and /E �

Table 7
Potential new physics signatures in the /E � +2 jet channel. This does not include processes complementary to those
in Table 6, where a Z decays to a pair of neutrinos Z → νν̄, thus producing missing energy.

potential estimate [66]. The /E � +heavy flavor (c/b)
signature was studied in the CDF stop/sbottom search
[71]. We use these analyses as examples in our
discussion.

W (Z)bb̄ signature

Selection and sample composition

The Wbb̄ (Z(→ νν̄)bb̄) selection criteria and the re-
sultant sample composition are summarized in Fig. 10
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WH(110)

tt

tb

tqb

WZ

Wbb

1. e or µ with pT> 20 GeV/c

2. E/ T> 20 GeV

3. 2 jets with ET>15 GeV

4. 2 b-tags

37

9

23
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6

9

Figure 10. Selection cuts and composition of the Wbb̄
sample.

Zbb

ZH(110)

ZZ

tt

E/ Tbb

1. E/ T> 40 GeV

2. 2 jets with ET>15 GeV

3. min(∆φ(jet,E/ T))>0.5

4. 2 b-tags

37

26

17

20

Figure 11. Selection cuts and composition of the /E � bb̄
sample.

(Fig. 11). The dominant contribution to both samples
is QCD production of a vector boson accompanied by
two b-jets.

QCD W (Z)bb̄ production. Experimental stud-
ies of gluon splitting to heavy flavor.

Diagrams of QCD associated production of W (Z)
and heavy flavor jets are presented in Figure 12. The
leading contribution is W (Z)+gluon production with
subsequent gluon splitting to a bb̄ or cc̄ pair, shown in
Figure 12(a).

Though a next-to-leading-order calculation of the
QCD Wbb̄ production exists [72], even the authors
themselves recommend that it should be tested ex-
perimentally. This is a particularly hard task in the
presence of a potential signal contribution. In the case
of the Higgs search, an invariant mass of two b-jets
could be used as an additional handle, since gluon

splitting contributes mainly to the low part of the M � �̄

spectrum, while the Higgs is a resonance at 110-130
GeV/c2. This is not the case for some other potential
signal process, e.g. process 5 in Table 4.

The probability for a gluon to split to two heavy
flavor jets can be studied experimentally in different
samples. The signal contamination becomes negligible,
if the presence of a vector boson is not required.

Three heavy flavor production mechanisms can be
isolated – direct production, final state gluon splitting
and initial state gluon splitting, also called flavor
excitation. Diagrams of these processes are presented
in Figure 13.

Though direct production is the lowest order pro-
cess, it is responsible for the production of only ∼ 20%
of heavy flavor jets with energy above 20 GeV; about
35% are produced by flavor excitation and 45% by
gluon splitting. The relative contribution of different
processes changes after b-tagging is applied. Tagging is
usually more efficient on directly produced jets, which
tend to be back-to-back in the azimuthal plane. Heavy
flavor quarks produced from gluon splitting are not
well separated, and are often assigned to the same
jet. Thus the relative contribution of gluon splitting
to the double-tagged jet sample is quite low. Flavor
excitation involves an initial state gluon splitting to
two heavy flavor quarks, one of which undergoes
hard scattering. The other quark, being a part of
the proton remnant, is often outside the detector
acceptance. Thus, the contribution of flavor excitation
to the double-tagged sample is significantly depleted.
An analysis of the angular correlation between two
heavy flavor tagged jets can be used to isolate the
gluon-splitting component in heavy flavor production,
as depicted in Fig. 14.

Different methods can be used to tag heavy flavor
jets.

1. Impact parameter or secondary vertex tagging
(JETPROB or SECVTX in CDF jargon) [70]
are the ones most commonly used. These
samples have relatively high statistics. Using
the same tagging method for the background
and the signal sample eliminates the systematic
uncertainty. The main disadvantage of these
methods is the relatively low purity of these
samples – contamination from c-jets and mistags
is non-negligible. Usually, to get a stable fit, the
b/c ratio has to be fixed to the one predicted
by Monte Carlo, which is not without its own
uncertainty.

2. One of the heavy flavor jets is tagged by the
presence of a high p � > 8 GeV/c lepton –
electron or muon – and JETPROB or SECVTX
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Figure 12. Diagrams of QCD associated production of W (Z) and heavy flavor jets.
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Figure 13. Diagrams of QCD heavy flavor production.

tags another jet [73]. These samples have high
statistics as well, but again suffer from charm
and mistag contamination. Nonetheless, it is an
interesting independent study.

3. Both heavy flavor jets can be tagged by leptons.
In this case it is possible to go lower in lepton mo-
mentum, usually p � > 3 GeV/c [74]. Compared
to the first two cases, these studies probe a lower
energy region, where the direct production mech-
anism dominates. Thus not much information
about gluon splitting probability can be gained.

4. Study #2 can be modified to increase the purity
by reconstructing exclusive or semi-exclusive fi-
nal states in one of the jets:

(a) Reconstructing a decay chain D∗ →
D0π,D0 → Ke(µ)ν can isolate the charm
contribution [75]. The presence of a high
p � lepton guarantees that the contribution
from b → c decay is at the order of 10%
or lower. Studying the angular correlation
between D∗ jet and an impact parameter
tagged jet isolates the gluon splitting to
charm contribution. This probability can
then be applied to study #2 to extract the

probability of gluon splitting to b-quarks.

(b) A similar trick can be used to isolate the b-
contribution in the lepton sample. Promis-
ing decay chains are [76]: B → `νD∗,
D∗ → D0π, D0 → Kπ or K3π; B → `νD+,
D+ → Kππ; B → `νD0, D0 → Kπ; and
B → J/ΨK.

In Table 8, we present the number of events in each
of the discussed samples collected in Run I and ex-
pected in Run II and associated statistical uncertainty
on the gluon splitting probability.

Run I numbers are based on CDF results. In
Run II, both CDF and DØ will have similar tracking
and vertexing capabilities, thus these numbers are
applicable to both detectors. Statistics in Run II is
increased by a factor of 40, where 20 is gained from the
luminosity increase and 2 from increased acceptance
of the silicon microvertex detectors. The tagging
efficiency increase is not taken into account. With
these dedicated studies, the statistical uncertainty on
the probability of gluon splitting to heavy flavor quarks
can be significantly reduced in Run II, and will become
adequate to the needs of new physics searches.
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# Sample N(Run I) σ(g → QQ̄) Run I N(Run II) σ(g → QQ̄) Run II
1 Double tagged jets 700 20% 28000 3.2%
2 Muon+JETPROB tag 2620 16% 104800 2.5%
3 c→ D∗ → D0(→ K`ν)π 18000 15% 720000 2.4%
4 B → D∗`ν → D0(→ Kπ/K3π)`νπ 1700 n.a. 68000 n.a.
5 B → D+(→ Kππ)`ν 1900 n.a. 76000 n.a.
6 B → D0(→ Kπ)`ν 2700 #4-#7 108000 #4-#7
7 B → J/ΨK(∗) 1300 23% 52000 3.6%

Table 8
Data samples for heavy flavor production study. Numbers in samples #1 and #2 are double tags, while in samples
#3-#7 numbers of exclusively reconstructed events are shown, without requiring a tag on the opposite side.

Figure 14. Distribution ∆φ between two b-quarks from
Monte Carlo events.

Top, single top and diboson production

Other backgrounds to new physics searches are top
pair [77], single top [78] and diboson [79] production.
The theoretical predictions for these backgrounds are
more reliable, because they do not involve gluon
radiation and splitting, yet they still have to be tested
experimentally. This is more or less a straightforward
task for top pair and diboson production, where final
states can be exclusively identified. It is less so for
single top production, where the final state is exactly
the same –Wbb̄ – as in new physics channels in Table 4.

Additional mass constraints, e.g. on the Wb mass can
be used to isolate this process, but it is not at all
obvious that adequate uncertainty can be reached for
this channel.

Missing energy and heavy flavor signatures

Here, we summarize the selection criteria and com-
position of the missing energy and heavy flavor sample
used for top squark searches [71]:

W→τ,j

W→l,2j

QCD

Zjj

tt

WW,WZ,ZZ

E/ Tc

1. E/ T> 40 GeV

2. 2 jets with ET>15 GeV

3. min(∆φ(jet,E/ T)>45o

4. ∆φ(jet1,E/ T))<165o

5. 45o<∆φ(jet1,jet2)<165o

6. 1 c-tag

53

8

5

3 23

8

Figure 15. Selection cuts and composition of /E � c
sample.

More than 50% of the background is composed of
W (→ τν) + 1 jet events.

W + c production

The leading order production process forW (→ τν)+
1 jet, where this jet is identified as charm, is sg →Wc.
The main uncertainty of the production rate for this
process comes from the PDF of sea s quarks f � (x),
which is measured by NuTeV [80] in the neutrino
scattering process ν � s→ µc.
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Figure 16. (a) Distribution in x of sea s-quarks that
contribute to sg → Wc production at the Tevatron,
generated with PYTHIA 6.1+CTEQ4LO. Selection
cuts have been applied. (b) Solid lines represent f � (x)
and its uncertainty, as measured by NuTeV. It is
compared to GRV94LO (dashed line) and CTEQ4LO
(dot-dashed line) strange sea distributions.

Figure 16 (a) shows the distribution in x of sea
s-quarks that contribute to sg → Wc production at
the Tevatron after the selection cuts from Figure 15
have been applied. Figure 16 (b) shows the f � (x) and
its uncertainty measured by NuTeV. As we see, the
region of NuTeV sensitivity is relevant for Tevatron
studies. The overall uncertainty on f � (x) is 13.5%.
f � (x) measured by NuTeV is in a good agreement with
the results of CCFR [81], which has an uncertainty of
10.5%.

Since these uncertainties are dominated by the
experimental statistics, we can hope that the combined
result will have an uncertainty near 8.5%. The strange
sea parton density function was also measured by the
CHARM II [82] and CDHS [83] experiments. Combi-
nation of results of all four experiments is certainly
desirable, but non–trivial, since somewhat different
techniques where used in each analysis.

In Figure 16(b), f � (x) measured by NuTeV is com-
pared to the one provided by the GRV94LO [84] and
CTEQ4LO [85] PDF’s, which are shown by dashed and
dot-dashed lines, respectively. None of the PDF’s pro-
vide an adequate description of the strange sea data. In
the Tevatron search experiments, the systematic uncer-
tainty on the background due to PDF’s was typically

estimated by switching from one PDF to another. In
this case, the systematic uncertainty on the number
of Wc events that pass our cuts is 36%. If instead
of CTEQ4LO, f � (x) measured by NuTeV were used,
the number of expected Wc events would go down by
30%. This is within the estimated uncertainty, but
clearly the uncertainty has been overestimated. The
correct uncertainty to use is 13.5%, or 8.5%, when the
results of NuTeV and CCFR will be combined. This is
a significant reduction compared to 36%, yet it is still
not down to the desirable level of 5%. We can probably
do better by studying Wc production when the W
is identified by its decay to a muon or an electron.
The expected number of events in the Wc,W →
`ν(` = e, µ) channel is about 2800, after applying
the cuts listed in Figure 15, which corresponds to the
statistical uncertainty for this background of about
2%. The systematic uncertainty on missing energy and
charm identification are common to the two channels,
and the difference is in lepton vs. tau identification
uncertainty, which can be expected to be below 5%
with Run II statistics.

QCD background

The next dominant background in the /E � c channel is
QCD multijet production, where missing energy comes
from jet energy mis-measurement. This background
is the toughest one to estimate, because it involves
multiple gluon radiation and splitting. Not only the
overall rate, but also the angular correlation between
jets may not be predicted reliably. To isolate this
component, the usual trick is to apply all the signal
selection cuts except tagging, subtract other known
backgrounds and call the rest “QCD.” The tagging
probability derived from an independent jet sample
is then applied to estimate the QCD contribution to
the tagged sample [86]. One obvious drawback is that
the heavy flavor fraction can change after the cuts are
applied. Another is that the signal contribution is
not always negligible even before tagging, and to some
extent, it may be normalized away.

Other backgrounds in the /E � c channel.

Other backgrounds in the /E � c channel are top pair
production, di-bosons, Z+ jets and W+ jets, where
leptons were not identified. The discussion of these
processes in Section 6.3 applies to the /E � c channel as
well.

7. Variable flavor number schemes for heavy
quark electroproduction

by J. Smith
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Heavy quark production has been a major topic of
investigation at hadron-hadron, electron-proton and
electron-positron colliders. Here a review is given
of some topics which are of interest primarily for
electron-proton colliders. We concentrate on this
reaction because a theoretical treatment can be based
on the operator product expansion, and also because
data are available for deep-inelastic charm production
at HERA. How all this relates to Fermilab experiments
will be discussed at the end.

In QCD perturbation theory, one needs to introduce
a renormalization scale and a mass factorization scale
to perform calculations. We choose both equal to µ2,
which will be a function of Q2 and the square of the
mass of the charm quark m2. At small µ2, where
kinematic effects due to quark masses are important,
the best way to describe charm quark production is via
heavy quark pair production from light quark u, d, s
and gluon initial states. The mass m only appears in
the heavy quark coefficient functions (or partonic cross

sections) like H
S � (2)
� � 
 (z,Q2,m2, µ2), etc., [87]. Here the

superscripts refer to their flavor decomposition and
the order in perturbation theory, while the subscripts
refer to the projection i = 2, L and the partonic
initial state. The arguments refer to the partonic
Bjorken variable z = Q2/(s + Q2) and to the fact
that these functions depend upon invariants and scales.
The renormalization necessary to calculate these NLO
expressions follows the CWZ method [88]. The symbol
H refers to those coefficient functions which are derived
from Feynman diagrams where the virtual photon
couples to a heavy quark line. Analytic expressions for
these functions are not known, but numerical fits are
available in [89]. Asymptotic expressions in the limit
Q2 � m2 are available in [90]. These contain terms
like ln2(Q2/m2) and ln(Q2/m2) ln(Q2/µ2) multiplied
by functions of z; they are manifestly singular in the
limit that m→ 0.

There are other heavy quark coefficient functions

such as L
NS � (2)
� � � (z,Q2,m2), which arise from tree di-

agrams where the virtual photon attaches to the an
initial state light quark line, so the heavy-quark is pair
produced via virtual gluons. Analytic expressions for
these functions are known for all z, Q2 and m2, which,
in the limit Q2 � m2 contain powers of ln(Q2/m2)
multiplied by functions of z. The three-flavor light
mass MS parton densities can be defined in terms of
matrix elements of operators and are now available in
parton density sets. This is a fixed order perturbation
theory (FOPT) description of heavy quark production
with three-flavor parton densities. Due to the work
in [87], the perturbation series is now known up to
second order. In regions of moderate scales and
invariants, this NLO description is well defined and

can be combined with a fragmentation function to
predict exclusive distributions [91] for the outgoing
charm meson, the anti-charm meson and the additional
parton. This NLO massive charm approach agrees well
with the recent D-meson inclusive data in [92] and [93].
The charm quark structure functions in this NLO de-
scription will be denoted

� EXACT
i,c ( ����� 2 ��� 2 ��� f =

3).
A different description, which should be more appro-

priate for large scales where terms in m2 are negligible,
is to represent charm production by a parton density
f � (x, µ2), with a boundary condition that the density
vanishes at small values of µ2. Although at first sight
these approaches appear to be completely different,
they are in fact intimately related. It was shown in
[94] that the large terms in ln(Q2/m2) which arise
when Q2 � m2, can be resummed to all orders
in perturbation theory. In this reference, all the
two-loop corrections to the matrix elements of massive
quark and massless gluon operators in the operator
product expansion were calculated. These contain the
same type of logarithms mentioned above multiplied
by functions of z (which is the last Feynman inte-
gration parameter). After operator renormalization
and suitable reorganization of convolutions of the
operator matrix elements (OME’s) and the coefficient
functions, the expressions for the infrared-safe charm
quark structure functions F � �

� (x,Q2,m2,∆) take on a
simple form. After resummation, they are convolutions
of light-mass, four-flavor parton coefficient functions,

commonly denoted by expressions like CS � (2)
� � 
 (Q2/µ2)

(available in [95], [96]), with four-flavor light-parton
densities, which also include a charm quark density
f � (x, µ2). Since the corrections to the OME’s con-
tain terms in ln(Q2/m2) and ln(m2/µ2) as well as
non-logarithmic terms, it is simplest to work in the
MS scheme with the scale µ2 = m2 for Q2 ≤ m2

and µ2 = m2 + Q2(1 − m2/Q2)2/2 for Q2 > m2

and discontinuous matching conditions on the flavor
densities at µ2 = m2. Then all the logarithmic terms
vanish at Q2 = µ2 = m2 and the non-logarithmic
terms in the OME’s are absorbed into the boundary
conditions on the charm density, the new four-flavor
gluon density and the new light-flavor u,d,s densities.
The latter are convolutions of the previous three-flavor
densities with the OME’s given in the Appendix of [94].

The above considerations lead to a precise descrip-
tion through order α2

� of how, in the limit m →
0, to re-express the FEXACT� �

� (x,Q2,m2) written in
terms of convolutions of heavy quark coefficient func-
tions with three-flavor light parton densities into a
description in terms of four-flavor light-mass parton
coefficient functions convoluted with four-flavor par-
ton densities. This procedure leads to the so-called
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zero-mass variable-flavor-number scheme (ZM-VFNS)
for F � �

� (x,Q2,∆) where the m dependent logarithms
are absorbed into the new four-flavor densities. To
implement this scheme, one has to be careful to use
inclusive quantities which are collinearly finite in the
limit m → 0 and ∆ is an appropriate parameter
which enables us to do this. In the expression for
F � �

� there is a cancellation of terms in ln3(Q2/m2)
between the two-loop corrections to the light quark
vertex function (the Sudakov form factor) and the
convolution of the densities with the soft part of
the L2 � � -coefficient function. This is the reason for
the split of L � � � into soft and hard parts, via the
introduction of a constant ∆. Details and analytic
results for LSOFT� �

� and LHARD� �
� are available in [97]. All

this analysis yielded and used the two-loop matching
conditions on variable-flavor parton densities across
flavor thresholds, which are special scales where one
makes transitions from say a three-flavor massless
parton scheme to a four-flavor massless parton scheme.
The threshold is a choice of µ which has nothing
to do with the actual kinematical heavy flavor pair
production threshold at Q2(x−1 − 1) = 4m2. In
[94],[98] it was shown that the FEXACT� �

� (x,Q2,m2, n � =
3) tend numerically to the known asymptotic results
in FASYMP� �

� (x,Q2,m2, n � = 3), when Q2 � m2, which
also equal the ZM-VFNS results. The last description
is good for large (asymptotic) scales and contains
a charm density f � (x, µ2) which satisfies a specific
boundary condition at µ2 = m2. We denote the
charm quark structure functions in this description by� PDF
i,c ( ����� 2 � � f = 4).

For moderate values of Q2, a third approach has
been introduced to describe the charm components
of F � (x,Q2). This is called a variable flavor number
scheme (VFNS). A first discussion was given in [99],
where a VFNS prescription called ACOT was given
in lowest order only. A proof of factorization to
all orders was recently given in [100] for the total
structure functions F � (x,Q2), but the NLO expressions
for F � �

� (x,Q2,m2) in this scheme were not provided.
An NLO version of a VFNS scheme has been intro-
duced in [97] and will be called the CSN scheme. A
different approach, also generalized to all orders, was
given in [94],[98], which is called the BMSN scheme.
Finally another version of a VFNS was presented in
[101], which is called the TR scheme. The differences
between the various schemes can be attributed to two
ingredients entering the construction of a VFNS. The
first one is the mass factorization procedure carried
out before the large logarithms can be resummed.
The second one is the matching condition imposed on
the charm quark density, which has to vanish in the
threshold region of the production process. All VFNS

approaches require two sets of parton densities. One
set contains three-flavor number densities whereas the
second set contains four-flavor number densities. The
sets have to satisfy the MS matching relations derived
in [94]. Appropriate four-flavor densities have been
constructed in [97] starting from the three-flavor LO
and NLO sets of parton densities recently published in
[102].

1 10 100 1000

Q
2
,GeV

2

0

0.1

0.2

0.3

F 2,
c(x

,Q
2 )

EXACT
PDF
BMSN
CSN

     

Figure 17. The charm quark structure functions
FEXACT

2 �
� (n � = 3) (solid line) FCSN

2 �
� (n � = 4), (dot-

dashed line) FBMSN
2 �
� (n � = 4), (dashed line) and

FPDF
2 �
� (n � = 4), (dotted line) in NNLO for x = 0.005

plotted as functions of Q2.

Since the formulae for the heavy quark structure
functions are available in [97], we only mention a few
points here. The BMSN scheme avoids the introduc-
tion of any new coefficient functions other than those
above. Since the asymptotic limits for Q2 � m2 of all
the operator matrix elements and coefficient functions
are known, we define (here Q refers to the heavy charm
quark)

FBMSN
� � � (x,Q2,m2,∆, n � = 4) =

FEXACT
� � � (x,Q2,m2,∆, n � = 3)

− FASYMP
� � � (x,Q2,m2,∆, n � = 3)

+ FPDF
� � � (x,Q2,m2,∆, n � = 4) . (33)

The scheme for FCSN� � � introduces a new heavy quark

OME A
NS � (1)

� � (z, µ2/m2) [103] and coefficient functions
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H
NS � (1)
� � � (z,Q2/m2) [104] because it requires an incom-

ing heavy quark Q, which did not appear in the NLO
corrections in [87]. The CSN coefficient functions are
defined via the following equations. Up to second order
we have

CCSN � SOFT � NS � (2)
� � � � �

(
∆,

Q2

m2
,
Q2

µ2

)
= A

NS � (2)
� � � �

( µ2

m2

)
CNS � (0)
� � �

−β0 � � ln

(
µ2

m2

)
×CNS � (1)

� � �
(Q2

µ2

)
−CVIRT � NS � (2)

� � � (
Q2

m2
)

− LSOFT � NS � (2)
� � �

(
∆,

Q2

m2
,
Q2

µ2

)
, (34)

with the virtual term the second order Sudakov form
factor. The other CSN coefficient functions are defined
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Figure 18. The charm quark structure functions
FEXACT�

�
� (n � = 3) (solid line) FCSN�

�
� (n � = 4), (dot-

dashed line) FBMSN�
�
� (n � = 4), (dashed line) and

FPDF�
�
� (n � = 4), (dotted line) in NNLO for x = 0.005

plotted as functions of Q2.

by equations like (we only give one of the longitudinal
terms for illustration)

CCSN � S � (1)
�

�



(Q2

m2
,
Q2

µ2

)
=

H
S � (1)

�
� 

(Q2

m2

)
−AS � (1)

� 
 (
µ2

m2
) CCSN � NS � (0)

�
� �

(Q2

m2

)
,

(35)

with CCSN � NS � (0)
�

� � = 4m2/Q2. The CSN and BMSN

schemes are designed to have the following two prop-
erties. First of all, suppressing unimportant labels,

FCSN
� � � (n � = 4) = FBMSN

� � � (n � = 4)

= FEXACT
� � � (n � = 3) for Q2 ≤ m2 . (36)

Since f � (m2)NNLO 6= 0 (see [94]) this condition can be
only satisfied when we truncate the perturbation series
at the same order. The second requirement is that

lim
� 2� � 2

FBMSN
� � � (n � = 4) = lim

� 2� � 2
FCSN
� � � (n � = 4)

= lim
� 2� � 2

FPDF
� � � (n � = 4) . (37)

The only differences between the two schemes arises
from terms in m2 so they may not be equal just above
Q2 = m2. This turns out to be the case for the
longitudinal structure function, which is more sensitive
to mass effects.

Figure 17 shows NNLO results for the Q2 de-
pendence of FEXACT

2 �
� (n � = 3), FCSN

2 �
� (n � = 4),

FBMSN
2 �
� (n � = 4), and FPDF

2 �
� (n � = 4) at x = 0.005.

Note that the results satisfy the requirements in
Eqs. (36) and (37). The ZM-VFNS description is
poor at small Q2. Figure 18 shows the results for
FEXACT�

�
� (n � = 3), FCSN�

�
� (n � = 4), FBMSN�

�
� (n � = 4),

and FPDF�
�
� (n � = 4) at x = 0.005. We see that the

CSN result is negative and therefore unphysical for
2.5 < Q2 < 6 (GeV/c)2 which is due to the term in
4m2/Q2 and the subtraction in Eq. (35).

One way this research work is of relevance to
Fermilab experiments is that it produces more precise
ZM-VFNS parton densities. Such densities are used
extensively to predict cross sections at high ener-
gies, for example for single top quarks. Therefore
the previous work on four-flavor parton densities has
been extended in [105] to incorporate the two-loop
discontinuous matching conditions across the bottom
flavor threshold at µ = m � and provided a set of
five-flavor densities, which contains a bottom quark
density f � (x, µ2). The differences between the five-
flavor densities and those in [106] and [35] are also
discussed. Results for deep-inelastic electroproduction
of bottom quarks will be presented in [107].

8. The Underlying Event in Hard Scattering
Processes

by Rick Field and David Stuart

8.1. Introduction
The total proton-antiproton cross section is the sum

of the elastic and inelastic cross sections. The inelastic
cross section consists of a single-diffractive, double-
diffractive, and a “hard core” component, where the
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“hard core” is everything else. “Hard core” does not
necessarily imply “hard scattering.” A “hard scatter-
ing” collision, such as that illustrated in Fig. 19(a), is
one in which a “hard” (i.e. large transverse momen-
tum) 2-to-2 parton-parton subprocess has occurred.
“Soft” hard core collisions correspond to events in
which no “hard” interaction has occurred. When there
is no large p � subprocess in the collision, one is not
probing short distances and it probably does not make
any sense to talk about partons. The QCD “hard
scattering” cross section grows with increasing collider
energy and becomes a larger and larger fraction of the
total inelastic cross section. In this analysis, we used
the CDF Min-Bias trigger data sample in conjunction
with the JET20 trigger data sample to study the
growth and development of “charged particle jets”
from p � (jet) = 0.5 to 50 GeV. We compared several
“local” jet observables with the QCD “hard scattering”
Monte-Carlo models of HERWIG[1], ISAJET[2], and
PYTHIA[3].

A “hard scattering” event, like that illustrated in
Fig. 19(a) consists of large-p � outgoing hadrons that
originate from the large-p � partons (i.e., outgoing hard
scattering “jets”) and also hadrons that originate from
the break-up of the proton and antiproton (i.e., the
“beam-beam remnants”). The “underlying event” is
an interesting object that is not very well understood.
In addition to beam-beam remnants, it may contain
hadrons resulting from initial-state radiation. Also, it
is possible that multiple parton scattering occurs in
hadron-hadron collisions as illustrated in Fig. 19(b).
This is a controversial issue, but the underlying event
might also contains hadrons that originate from mul-
tiple parton interactions. PYTHIA, for example, uses
multiple parton interactions as a way to enhance the
activity of the underlying event [3].

In this analysis, we studied a variety of “global”
observables to probe the growth and structure of
the underlying event. We find that the underlying
“hard scattering” event is not the same as a “soft” pp̄
collision. For the same available energy, the underlying
event in a hard scattering is considerably more active
(i.e., higher charged particle density and more p � )
than a “soft” collision. This is not surprising since
a violent hard scattering has occurred! We find that
none of the QCD Monte-Carlo models (with their
default parameters) describe correctly all the properties
of the underlying event.

8.2. Data Selection and Monte-Carlo Models
(1) Data Selection

The CDF detector, described in detail in Ref. [122],
measures the trajectories and transverse momenta, p � ,
of charged particles in the pseudorapidity region |η| <

1.1 with the central tracking chamber (CTC), silicon
vertex detector (SVX), and vertex time projection
chamber (VTX), which are immersed in a 1.4 T
solenoidal magnetic field. In this analysis we consider
only charged particles measured in the central tracking
chamber (CTC) and use the two trigger sets of data
listed in Table 9. The minimum bias (min-bias) data
were selected by requiring that at least one particle
interacted with the forward beam-beam counter BBC
(3.4 < η < 5.9) and/or the backward BBC (−5.9 <
η < −3.4). The min-bias trigger selects predominately
the “hard core” component of the inelastic cross
section.

Charged particle tracks are found with high effi-
ciency as long as the density of particles is not high.
To remain in a region of high efficiency, we consider
only charged particles with p � > 0.5 GeV and |η| < 1.
The observed tracks include some fake tracks that
result from secondary interactions between primary
particles, including neutral particles, and the detector
material. There are also particles originating from
other pp̄ collisions. To reduce the contribution from
these sources, we consider only tracks which point
to the primary interaction vertex within 2 cm along
the beam direction and 1 cm transverse to the beam
direction. Detector simulations indicate that this
impact parameter cut is very efficient and that the
number of fake tracks is about 3.5% when a 1 cm
impact parameter cut is applied in conjunction with
a 2 cm vertex cut. Without the impact parameter cut
the number of fake tracks is approximately 9%.

This dependence of the number of fake tracks on
the CTC impact parameter cut provides a method
of estimating systematic uncertainties due to fakes.
Every data point P on every plot in this analysis was
determined three times by using a 2 cm vertex cut
in conjunction with three different CTC d0 cuts; a
1 cm CTC d0 cut (P ), a 0.5 cm CTC d0 cut (P1),
and no CTC d0 cut (P2). The 1 cm cut determined
the value of the data point, P , and the difference
between the 0.5 cm cut value and no cut value of
the data point determined the systematic error of the
data point as follows: sys-error = P |P2 − P1|/P1 This
systematic error was then added in quadrature with
the statistical error. We do not correct the data for the
CTC track-finding efficiency. Instead, the theoretical
Monte-Carlo model predictions are corrected.

(2) QCD “Hard Scattering” Monte-Carlo
Models

The “hard” scattering QCD Monte-Carlo models
used in this analysis are listed in Table 10. The
QCD perturbative 2-to-2 parton-parton differential
cross section diverges as the p � of the scattering, phard� ,
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Figure 19. (a) Illustration of a pp̄ collision in which a “hard” 2-to-2 parton scattering with transverse momentum,
p � (hard), has occurred. The resulting event contains particles that originate from the two outgoing partons (plus
final-state radiation) and particles that come from the breakup of the p and p̄ (i.e., “beam-beam remnants”).
The “underlying event” consists of the beam-beam remnants plus initial-state radiation; (b) Illustration of a pp̄
collision in which a multiple parton interaction has occurred. In addition to the “hard” 2-to-2 parton scattering
with transverse momentum, p � (hard), there is an additional “semi-hard” parton-parton scattering that contributes
particles to the “underlying event.” For PYTHIA, we include the contributions from multiple parton scattering in
the beam-beam remnant component.

Table 9
Data sets and selection criterion used in this analysis.

CDF Data Set Trigger Events Selection

Min-Bias Min-Bias Trigger 626,966 zero or one vertex in |z| < 100 cm
|z � − z � | < 2 cm, |CTC d0| < 1 cm

ptrack� > 0.5 GeV, |η| < 1
JET20 Calorimeter Tower cluster 78,682 zero or one vertex in |z| < 100 cm

with E � > 20 GeV |z � − z � | < 2 cm, |CTC d0| < 1 cm
ptrack� > 0.5 GeV, |η| < 1

Table 10
Theoretical QCD “hard” scattering Monte-Carlo models studied in this analysis. In all cases we take p � (hard) >

3 GeV.

Monte-Carlo Model Subprocess Comments

HERWIG 5.9 QCD 2-to-2 parton scattering Default values for all parameters
IPROC = 1500

ISAJET 7.32 QCD 2-to-2 parton scattering Default values for all parameters
TWOJET

PYTHIA 6.115 QCD 2-to-2 parton scattering Default values for all parameters:
MSEL = 1 PARP(81) = 1.4

PYTHIA 6.125 QCD 2-to-2 parton scattering Default values for all parameters:
MSEL = 1 PARP(81) = 1.9

PYTHIA No MS QCD 2-to-2 parton scattering Default values for all parameters:

MSEL = 1 MSTP(81) = 0
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goes to zero (see Fig. 19). One must set a minimum
phard� large enough so that the resulting cross section is
not larger that the total “hard core” inelastic cross
section, and also large enough to ensure that QCD
perturbation theory is applicable. In this analysis we
take phard� > 3 GeV.

Each of the QCD Monte-Carlo models handle the
“beam-beam remnants” in a similar fashion. A hard
scattering event is basically the superposition of a hard
parton-parton interaction on top of a “soft” collision.
HERWIG[1] assumes that the underlying event is
a soft collision between the two “beam clusters.”
ISAJET[2] uses a model similar to the one it uses for
soft “min-bias” events (i.e., “cut Pomeron”), but with
different parameters, to describe the underlying beam-
beam remnants. PYTHIA[3] assumes that each in-
coming beam hadron leaves behind a “beam remnant,”
which do not radiate initial state radiation, and simply
sail through unaffected by the hard process. However,
unlike HERWIG and ISAJET, PYTHIA also uses
multiple parton interactions to enhance the activity of
the underlying event as illustrated in Fig. 19.

In this analysis we examine two versions of
PYTHIA, PYTHIA 6.115 and PYTHIA 6.125 both
with the default values for all the parameters. The
default values of the parameters are different in version
6.115 and 6.125. In particular, the effective mini-
mum p � for multiple parton interactions, PARP(81),
changed from 1.4 GeV in version 6.115 to 1.9 GeV
in version 6.125. Increasing this cut-off decreases
the multiple parton interaction cross section which
reduces the amount of multiple parton scattering.
For completeness, we also consider PYTHIA with no
multiple parton scattering (MSTP(81)=0).

Since ISAJET employs “independent fragmenta-
tion” it is possible to trace particles back to their origin
and divide them into three categories: particles that
arise from the break-up of the beam and target (beam-
beam remnants), particles that arise from initial-state
radiation, and particles that result from the outgoing
hard scattering jets plus final-state radiation. The
“hard scattering component” consists of the particles
that arise from the outgoing hard scattering jets plus
initial and final-state radiation (sum of the last two
categories). Particles from the first two categories
(beam-beam remnants plus initial-state radiation) are
normally what is referred to as the underlying event
(see Fig. 19). Of course, these categories are not
directly observable experimentally. Nevertheless, it
is instructive to examine how particles from various
origins affect the experimental observables.

Since HERWIG and PYTHIA do not use indepen-
dent fragmentation, it is not possible to distinguish
particles that arise from initial-state radiation from

those that arise from final-state radiation, but we can
identify the beam-beam remnants. When, for example,
a color string breaks into hadrons it is not possible
to say which of the two partons producing the string
was the parent. For HERWIG and PYTHIA, we
divide particles into two categories: particles that arise
from the break-up of the beam and target (beam-beam
remnants), and particles that result from the outgoing
hard scattering jets plus initial and final-state radi-
ation (hard scattering component). For PYTHIA,
we include particles that arise from multiple parton
interactions in the beam-beam remnant component.

(3) Method of Comparing Theory with Data

Our philosophy in comparing the theory with data in
this analysis is to select a region where the data is very
“clean.” The CTC efficiency can vary substantially
for very low p � tracks and in dense high p � jets.
To avoid this we have considered only the region
p � > 0.5 GeV and |η| < 1 where the CTC efficiency
is high and stable (estimated to be 92% efficient)
and we restrict ourselves to jets less than 50 GeV.
The data presented here are uncorrected. Instead
the theoretical Monte-Carlo predictions are corrected
for the track finding efficiency and have an error
(statistical plus systematic) of about 5%. The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties.

In comparing the QCD “hard scattering” Monte-
Carlo models with the data, we require that the Monte-
Carlo events satisfy the CDF min-bias trigger and we
apply an 8% correction for the CTC track finding
efficiency. The corrections are small. On the average,
8 out of every 100 charged particles predicted by the
theory are removed from consideration. Requiring
the theory to satisfy the min-bias trigger is important
when comparing with the Min- Bias data, but does not
matter when comparing with the JET20 data since
essentially all high p � jet events satisfy the min-bias
trigger.

8.3. The Evolution of Charge Particle “Jets”
from 0.5 to 50 GeV

We define charged particle “jets” and examine the
evolution of these “jets” from pjet� = 0.5 to 50 GeV. As
illustrated in Fig. 20, “jets” are defined as “circular
regions” (R = 0.7) in η-φ space and contain charged
particles from the underlying event as well as particles
which originate from the fragmentation of high p �

outgoing partons (see Fig. 19). Also, every charged
particle in the event is assigned to a “jet,” with the
possibility that some “jets” might consist of just one
charged particle. We adapt a very simple jet definition
since we will be dealing with “jets” that consist of
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only a few low p � charged particles. The standard
jet algorithm based on calorimeter clustering is not
applicable at low p � .

Figure 20. Illustration of an event with six charged particles
(pT > 0.5 GeV and |η| < 1) and five charged “jets” (circular
regions in η-φ space with R = 0.7).

(1) Jet Definition (charged particles)

We define jets as circular regions in η-φ space with
“distance” R =

√
(∆η)2 + (∆φ)2. Our jet algorithm

is as follows:

• Order all charged particles according to their p � .

• Start with the highest p � particle and include in
the “jet” all particles within R = 0.7.

• Go to the next highest p � particle (not already
included in a “jet”) and add to the “jet” all
particles (not already included in a “jet”) within
R = 0.7.

• Continue until all particles are in a “jet.”

We consider all charged particles (p � > 0.5 GeV and
|η| < 1) and allow the jet radius to extend outside
|η| < 1. Fig. 20 illustrates an event with six charged
particles and five jets. We define the p � of the jet to
be the scalar p � sum of all the particles within the jet
(i.e., it is simply the scalar p � sum within the circular
region).

We know that the simple charged particle jet def-
inition used here is not theoretically favored since if
applied at the parton level it is not infrared safe. Of
course, all jet definitions (and in fact all observables)
are infrared safe at the hadron level. We have done
a detailed study comparing the nave jet definition
used here with a variety of more sophisticated charge

particle jet definitions. This analysis will be presented
in a future publication. Some of the observables
presented here do, of course, depend on one’s definition
of a jet and it is important to apply the same definition
to both the theory and data.

(2) Charged Jet Multiplicity versus p � (jet#1)

Fig. 21 shows the average number of charged parti-
cles (p � > 0.5 GeV and |η| < 1) within jet#1 (leading
charged jet) as a function of p � (jet#1). The solid
points are Min-Bias data and the open points are the
JET20 data. The JET20 data connect smoothly to
the Min-Bias data and allow us to study observables
over the range 0.5 < p � (jet#1) < 50 GeV. There
is a small overlap region where the Min-Bias and
JET20 data coincide. The errors on the data include
both statistical and correlated systematic uncertain-
ties, however, the data have not been corrected for
efficiency. Fig. 21 shows a sharp rise in the leading
charged jet multiplicity at low p � (jet#1) and then a
flattening out and a gradual rise at high p � (jet#1).
The data are compared with the QCD “hard scat-
tering” Monte-Carlo predictions of HERWIG 5.9,
ISAJET 7.32, and PYTHIA 6.115. The theory curves
are corrected for the track finding efficiency and have
an error (statistical plus systematic) of around 5%.

Figure 21. The average number of charged particles
(p � > 0.5 GeV and |η| < 1) within the leading charged
jet (R = 0.7) as a function of the p � of the leading
charged jet. The solid (open) points are Min-Bias
(JET20) data. The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The QCD “hard scattering” theory curves
(HERWIG 5.9, ISAJET 7.32, PYTHIA 6.115) are
corrected for the track finding efficiency and have an
error (statistical plus systematic) of around 5%.
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(3) Charged Jet “Size” versus p � (jet#1)

Although the charged particle jets are defined as
circular regions in η-φ space with R = 0.7, this is
not the “size” of the jet. The “size” of a jet can be
defined in two ways: size according to particle number
and size according to p � . The first corresponds to the
radius in η-φ space that contains 80% of the charged
particles in the jet, and the second corresponds to
the radius in η-φ space that contains 80% of the jet
p � . The data on the average “jet size” of the leading
charge particle jet are compared with the QCD “hard
scattering” Monte-Carlo predictions of HERWIG 5.9,
ISAJET 7.32, and PYTHIA 6.115 in Fig. 22. A
leading 20 GeV charged jet has 80% of its charged
particles contained, on the average, within a radius in
η-φ space of about 0.33, and 80% of its p � contained,
on the average, within a radius of about 0.20. Fig. 22
clearly illustrates the “hot core” of jets. The radius
containing 80% of the p � is smaller than the radius
that contains 80% of the particles. Furthermore, the
radius containing 80% of the p � decreases as the overall
p � of the jet increases due to limited momentum
perpendicular to the jet direction.

Figure 22. The average radius in η-φ space containing
80% of the charged particles (and 80% of the charged
p � ) as a function of the p � of the leading charged jet.
The errors on the (uncorrected) data include both sta-
tistical and correlated systematic uncertainties. The
QCD “hard scattering” theory curves (HERWIG 5.9,
ISAJET 7.32, PYTHIA 6.115) are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

8.4. The Overall Event Structure as a Function
of p � (jet#1)

In the previous section, we studied “local” leading
jets observables. The QCD Monte-Carlo models did
not have to describe correctly the entire event in order
to fit the observable. They only had to describe
correctly the properties of the leading charge particle
jet, and all the models fit the data fairly well (although
not perfectly). Now we will study “global” observables,
where to fit the observable the QCD Monte-Carlo
models will have to describe correctly the entire event
structure.

(1) Overall Charged Multiplicity versus
p � (jet#1)

Figure 23 shows the average number of charged
particles in the event with p � > 0.5 GeV and |η| < 1
(including jet#1) as a function of p � (jet#1) (leading
charged jet) for the Min-Bias and JET20 data. Again
the JET20 data connect smoothly to the Min-Bias
data, and there is a small overlap region where the
Min-Bias and JET20 data coincide. Figure 23 shows
a sharp rise in the overall charged multiplicity at low
p � (jet#1) and then a flattening out and a gradual rise
at high p � (jet#1) similar to Fig. 21. We would like to
investigate where these charged particles are located
relative to the direction of the leading charged particle
jet.

(2) Correlations in ∆φ relative to p � (jet#1)

As illustrated in Fig. 24, the angle ∆φ is defined
to be the relative azimuthal angle between charged
particles and the direction of the leading charged
particle jet. We label the region |φ − φjet#1| < 60◦

as “toward” jet#1 and the region |φ − φjet#1| > 120◦

is as “away” from jet#1. The “transverse” to jet#1
region is defined by 60◦ < |φ − φjet#1| < 120◦. Each
region, “toward,” “transverse,” and “away” covers the
same range |∆η| × |∆φ| = 2 × 120◦. The “toward”
region includes the particles from jet#1 as well as a
few particles from the underlying event. As we will
see, the “transverse” region is very sensitive to the
underlying event. The “away” region is a mixture
of the underlying event and the “away-side” hard
scattering jet.

Figure 25 shows the data on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as a
function of p � (jet#1) for the three regions. Each point
corresponds to the “toward,” “transverse,” or “away”
〈N � � 
 〉 in a 1 GeV bin. The solid points are Min-Bias
data and the open points are JET20 data. The data
in Fig. 25 define the average event “shape.” For
example, for an “average” pp̄ collider event at 1.8 TeV
with p � (jet#1) = 20 GeV there are, on the average,
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Figure 23. The average total number of charged
particles in the event (p � > 0.5 GeV and |η| < 1
including jet#1) as a function of the p � of the leading
charged jet. The solid (open) points are the Min- Bias
(JET20) data. The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The QCD “hard scattering” theory curves
(HERWIG 5.9, ISAJET 7.32, PYTHIA 6.115) are
corrected for the track finding efficiency and have an
error (statistical plus systematic) of around 5%.

Figure 24. Illustration of correlations in azimuthal
angle ∆φ relative to the direction of the leading
charged jet in the event, jet#1. The angle ∆φ =
φ − φjet#1 is the relative azimuthal angle between
charged particles and the direction of jet#1. The
region |∆φ| < 60◦ is referred to as ”toward” jet#1
(includes particles in jet#1) and the region |∆φ| >
120◦ is called “away” from jet#1. The “transverse” to
jet#1 region is defined by 60◦ < |∆φ| < 120◦. Each
region, “toward,” “transverse,” and “away” covers the
same range |∆η| × |∆φ| = 2× 120◦.

8.7 charged particles “toward” jet#1 (including the
particles in jet#1), 2.5 “transverse” to jet#1, and 4.9
“away” from jet#1.

Figure 25. The average number of “toward” (|∆φ| <
60◦), “transverse” (60◦ < |∆φ| < 120◦), and “away”
(|∆φ| > 120◦) charged particles (p � > 0.5 GeV and
|η| < 1 including jet#1) as a function of the p �

of the leading charged jet. Each point corresponds
to the 〈N � � 
 〉 in a 1 GeV bin. The solid (open)
points are the Min-Bias (JET20) data. The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties. The “toward,”
“transverse,” and “away” regions are defined in Fig. 24.

Figure 26 shows the data on the average scalar p �

sum of charged particles (p � > 0.5 GeV and |η| < 1)
as a function of p � (jet#1) for the three regions. Here
each point corresponds to the “toward,” “transverse,”
or “away” 〈p �

� � � 〉 in a 1 GeV bin. In Fig. 27, data on
〈N � � 
 〉 as a function of p � (jet#1) for the three regions
are compared with the QCD “hard scattering” Monte-
Carlo predictions of HERWIG 5.9, ISAJET 7.32, and
PYTHIA 6.115. The QCD Monte-Carlo models agree
qualitatively (but not precisely) with the data. We will
now examine more closely these three regions.

(3) The “Toward” and “Away” Region versus
p � (jet#1)

Figure 28 shows the data from Fig. 25 on the
average number of “toward” region charged particles
compared with the QCD “hard scattering” Monte-
Carlo predictions of HERWIG 5.9, ISAJET 7.32,
and PYTHIA 6.115. This plot is very similar to
the average number of charged particles within the
leading jet shown in Fig. 21. At p � (jet#1) = 20 GeV,
the “toward” region contains, on the average, about
8.7 charged particles with about 6.9 of these charged
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Figure 26. The average scalar p � sum of “toward”
(|∆φ| < 60◦), “transverse” (60◦ < |∆φ| < 120◦), and
“away” (|∆φ| > 120◦) charged particles (p � > 0.5 GeV
and |η| < 1 including jet#1) as a function of the p �

of the leading charged jet. Each point corresponds
to the 〈PT � � � 〉 in a 1 GeV bin. The solid (open)
points are the Min-Bias (JET20) data. The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties. The “toward,”
“transverse,” and “away” regions are defined in Fig. 24.

Figure 27. Data from Fig. 25 on the average number
of “toward” (|∆φ| < 60◦), “transverse” (60◦ < |∆φ| <
120◦), and “away” (|∆φ| > 120◦) charged particles
(p � > 0.5 GeV and |η| < 1 including jet#1) as a
function of the p � of the leading charged jet compared
to QCD “hard scattering” Monte-Carlo predictions of
HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.
The errors on the (uncorrected) data include both sta-
tistical and correlated systematic uncertainties. The
theory curves are corrected for the track finding effi-
ciency and have an error (statistical plus systematic) of
around 5%.

particles belonging to jet#1. As expected, the toward
region is dominated by the leading jet. This is seen
clearly in Fig. 29 where the predictions of ISAJET for
the “toward” region are divided into three categories:
charged particles that arise from the break-up of the
beam and target (beam-beam remnants), charged parti-
cles that arise from initial-state radiation, and charged
particles that result from the outgoing jets plus final-
state radiation. For p � (jet#1) values below 5 GeV
the “toward” region charged multiplicity arises mostly
from the beam-beam remnants, but as p � (jet#1)
increases the contribution from the outgoing jets plus
final-state radiation quickly begins to dominate. The
bump in the beam-beam remnant contribution at low
p � (jet#1) is caused by leading jets composed almost
entirely from the remnants.

Figure 28. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“toward” region ” defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.
Each point corresponds to the “toward” 〈N � � 
 〉 in
a 1 GeV bin. The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The theory curves are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

Fig. 30 shows the data from Fig. 25 on the aver-
age number of “away” region charged particles com-
pared with the QCD “hard scattering” Monte-Carlo
predictions of HERWIG 5.9, ISAJET 7.32, and
PYTHIA 6.115. In Fig. 21 the data from Fig. 26
on the average scalar p � sum in the “away” region is
compared to the QCD Monte-Carlo predictions. The
“away” region is a mixture of the underlying event
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Figure 29. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“toward” region defined in Fig. 24 compared with
the QCD ”hard scattering” Monte-Carlo predictions
of ISAJET 7.32. The predictions of ISAJETare
divided into three categories: charged particles that
arise from the break-up of the beam and target
(beam-beam remnants), charged particles that arise
from initial-state radiation, and charged particles that
result from the outgoing jets plus final-state radiation
(see Fig. 19). The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The theory curves are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

and the “away-side” outgoing “hard scattering” jet.
This can be seen in Fig. 32 where the predictions
of ISAJET for the “away” region are divided into
three categories: beam-beam remnants, initial-state
radiation, and outgoing jets plus final-state radiation.
Here the underlying event plays a more important role
since the “away-side” outgoing “hard scattering” jet
is sometimes outside the regions |η| < 1. For the
“toward” region the contribution from the outgoing
jets plus final state-radiation dominates for p � (jet#1)
values above about 5 GeV, whereas for the “away”
region this does not occur until around 20 GeV.

Both the “toward” and “away” regions are described
fairly well by the QCD “hard scattering” Monte-Carlo
models. These regions are dominated by the outgoing
“hard scattering” jets and as we saw in Section C the
Monte-Carlo models describe the leading outgoing jets
fairly accurately. We will now study the “transverse”
region which is dominated by the underlying event.

Figure 30. Data from Fig. 25 on the average number of
charged particles (p � > 0.5 GeV and |η| < 1) as a func-
tion of p � (jet#1) (leading charged jet) for the “away”
region defined in Fig. 24 compared with the QCD
“hard scattering” Monte-Carlo predictions of HER-
WIG 5.9, ISAJET 7.32, and PYTHIA 6.115. The
errors on the (uncorrected) data include both statistical
and correlated systematic uncertainties. The theory
curves are corrected for the track finding efficiency and
have an error (statistical plus systematic) of around 5%.

Figure 31. Data from Fig. 26 on the average scalar p �

sum of charged particles ((p � > 0.5 GeV and |η| < 1)
as a function of p � (jet#1) (leading charged jet) for
the “away” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.
The errors on the (uncorrected) data include both sta-
tistical and correlated systematic uncertainties. The
theory curves are corrected for the track finding effi-
ciency and have an error (statistical plus systematic) of
around 5%.
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Figure 32. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1)
as a function of p � (jet#1) (leading charged jet) for
the “away” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of ISAJET 7.32. The predictions of ISAJETare
divided into three categories: charged particles that
arise from the break-up of the beam and target
(beam-beam remnants), charged particles that arise
from initial-state radiation, and charged particles that
result from the outgoing jets plus final-state radiation
(see Fig. 19). The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The theory curves are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

8.5. The “Transverse” Region and the Under-
lying Event

Fig. 25 shows that there is a lot of activity in the
“transverse” region. If we suppose that the “trans-
verse” multiplicity is uniform in azimuthal angle φ and
pseudo-rapidity η, the observed 2.3 charged particles at
p � (jet#1) = 20 GeV translates to 3.8 charged particles
per unit pseudo-rapidity with p � > 0.5 GeV (multiply
by 3 to get 360◦, divide by 2 for the two units of
pseudo-rapidity, multiply by 1.09 to correct for the
track finding efficiency). We know that if we include
all p � that there are roughly 4 charged particles per
unit rapidity in a “soft” pp̄ collision at 1.8 TeV, and
the data show that in the underlying event of a “hard
scattering” there are about 3.8 charged particles per
unit rapidity in the region p � > 0.5 GeV! If one
includes all p � values then the underlying event has
a charge particle density that is at least a factor
of two larger than the 4 charged particles per unit
rapidity seen in “soft” pp̄ collisions at this energy. As
can be seen in Fig. 25, the charged particle density

in the “transverse” region is a function of p � (jet#1)
and rises very rapidity at low p � (jet#1) values. The
“transverse” charged multiplicity doubles in going from
p � (jet#1) = 1.5 GeV to p � (jet#1) = 2.5 GeV and
then forms an approximately constant “plateau” for
p � (jet#1) > 6 GeV.

Figure 33. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.
The errors on the (uncorrected) data include both sta-
tistical and correlated systematic uncertainties. The
theory curves are corrected for the track finding effi-
ciency and have an error (statistical plus systematic) of
around 5%.

Fig. 33 and Fig. 34 compare the “transverse” 〈N � � 
 〉
and the “transverse” 〈p �

� � � 〉, respectively, with the
QCD “hard scattering” Monte-Carlo predictions of
HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.
Fig. 35 and Fig. 36 compare the “transverse” 〈N � � 
 〉
and the “transverse” 〈PT � � � 〉, respectively, with three
versions of PYTHIA(6.115, 6.125, and no multiple
scattering, see Table 10). PYTHIA with no multiple
parton scattering does not have enough activity in the
underlying event. PYTHIA 6.115 fits the “transverse”
〈N � � 
 〉 the best, but overshoots slightly the “toward”
〈N � � 
 〉 in Fig. 28. ISAJET has a lot of activity in the
underlying event, but gives the wrong p � (jet#1) de-
pendence. Instead of a “plateau,” ISAJET predicts a
rising “transverse” 〈N � � 
 〉 and gives too much activity
at large p � (jet#1) values. HERWIG does not have
enough “transverse” 〈PT � � � 〉.

We expect the “transverse” region to be composed
predominately from particles that arise from the break-
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Figure 34. Data from Fig. 26 on the average scalar
p � sum of charged particles (p � > 0.5 GeV and
|η| < 1) as a function of p � (jet#1) (leading charged
jet) for the “transverse” region defined in Fig. 24
compared with the QCD “hard scattering” Monte-
Carlo predictions of HERWIG 5.9, ISAJET 7.32,
and PYTHIA 6.115. The errors on the (uncorrected)
data include both statistical and correlated systematic
uncertainties. The theory curves are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

Figure 35. Data from Fig. 35 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions of
PYTHIA 6.115, PYTHIA 6.125, and PYTHIA with
no multiple parton scattering (No MS). The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties. The theory curves
are corrected for the track finding efficiency and have
an error (statistical plus systematic) of around 5%.

Figure 36. Data from Fig. 26 on the average scalar p �

sum of charged particles (p � > 0.5 GeV and |η| < 1)
as a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions of
PYTHIA 6.115, PYTHIA 6.125, and PYTHIA with
no multiple parton scattering (No MS). The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties. The theory curves
are corrected for the track finding efficiency and have
an error (statistical plus systematic) of around 5%.

up of the beam and target and from initial-state radi-
ation. This is clearly the case as can be seen in Fig. 37
where the predictions of ISAJET for the “transverse”
region are divided into three categories: beam-beam
remnants, initial- state radiation, and outgoing jets
plus final-state radiation. It is interesting to see that
it is the beam-beam remnants that are producing the
approximately constant “plateau”. The contributions
from initial-state radiation and from the outgoing hard
scattering jets both increase as p � (jet#1) increases. In
fact, for ISAJET it is the sharp rise in the initial-state
radiation component that is causing the disagreement
with the data for p � (jet#1) > 20 GeV.

As we explained in Section B, for HERWIG and
PYTHIA it makes no sense to distinguish between
particles that arise from initial-state radiation from
those that arise from final-state radiation, but one can
separate the “hard scattering component” from the
beam-beam remnants. For PYTHIA the beam-beam
remnants include contributions from multiple parton
scattering as illustrated in Fig. 19. Fig. 38 and Fig. 39
compare the “transverse” 〈N � � 
 〉 with the QCD “hard
scattering” Monte-Carlo predictions of HERWIG 5.9
and PYTHIA 6.115, respectively. Here the predictions
are divided into two categories: charged particles that
arise from the break-up of the beam and target (beam-

40



Figure 37. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of ISAJET 7.32. The predictions of ISAJETare
divided into three categories: charged particles that
arise from the break-up of the beam and target
(beam-beam remnants), charged particles that arise
from initial-state radiation, and charged particles that
result from the outgoing jets plus final-state radiation
(see Fig. 19). The errors on the (uncorrected) data
include both statistical and correlated systematic un-
certainties. The theory curves are corrected for the
track finding efficiency and have an error (statistical
plus systematic) of around 5%.

beam remnants), and charged particles that result from
the outgoing jets plus initial and final-state radiation
(hard scattering component). As was the case with
ISAJET the beam-beam remnants form the approx-
imately constant “plateau” and the hard scattering
component increase as p � (jet#1) increases. However,
the hard scattering component of HERWIG and
PYTHIA does not rise nearly as fast as the hard
scattering component of ISAJET. This can be seen
clearly in Fig. 40 where we compare directly the hard
scattering component (outgoing jets plus initial and
final-state radiation) of the “transverse” 〈N � � 
 〉 from
ISAJET 7.32, HERWIG 5.9, and PYTHIA 6.115.
PYTHIA and HERWIG are similar and rise gently
as p � (jet#1) increases, whereas ISAJETproduces a
much sharper increase as p � (jet#1) increases.

There are two reasons why the hard scattering
component of ISAJET is different from HERWIG and
PYTHIA. The first is due to different fragmentation
schemes. ISAJET uses independent fragmentation,
which produces too many soft hadrons when partons

Figure 38. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of HERWIG 5.9. The predictions of HERWIG are
divided into two categories: charged particles that arise
from the break-up of the beam and target (beam-beam
remnants), and charged particles that result from the
outgoing jets plus initial and final-state radiation (hard
scattering component) (see Fig. 19). The errors on
the (uncorrected) data include both statistical and
correlated systematic uncertainties. The theory curves
are corrected for the track finding efficiency and have
an error (statistical plus systematic) of around 5%.

begin to overlap. The second difference arises from the
way the QCD Monte-Carlo produce “parton showers”.
ISAJET uses a leading-log picture in which the par-
tons within the shower are ordered according to their
invariant mass. Kinematics requires that the invariant
mass of daughter partons be less than the invariant
mass of the parent. HERWIG and PYTHIA modify
the leading-log picture to include “color coherence
effects” which leads to “angle ordering” within the
parton shower. Angle ordering produces less high p �

radiation within a parton shower which is what is seen
in Fig. 40. Without further study, we do not know
how much of the difference seen in Fig. 40 is due to
the different fragmentation schemes and how much is
due to the color coherence effects.

The beam-beam remnant contribution to the “trans-
verse” 〈N � � 
 〉 is different for each of the QCD Monte-
Carlo models. This can be seen in Fig. 41 where we
compare directly the beam-beam remnant component
of the “transverse” 〈N � � 
 〉 from ISAJET 7.32, HER-
WIG 5.9, PYTHIA 6.115, and PYTHIA with no
multiple parton interactions. Since we are considering
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Figure 39. Data from Fig. 25 on the average number
of charged particles (p � > 0.5 GeV and |η| < 1) as
a function of p � (jet#1) (leading charged jet) for the
“transverse” region defined in Fig. 24 compared with
the QCD “hard scattering” Monte-Carlo predictions
of PYTHIA 6.115. The predictions of PYTHIA are
divided into two categories: charged particles that
arise from the break-up of the beam and target
(beam-beam remnants), and charged particles that
result from the outgoing jets plus initial and final-state
radiation (hard scattering component). For PYTHIA,
the beam-beam remnants include contributions from
multiple parton scattering (see Fig. 19). The errors
on the (uncorrected) data include both statistical and
correlated systematic uncertainties. The theory curves
are corrected for the track finding efficiency and have
an error (statistical plus systematic) of around 5%.

only charged particles with p � > 0.5 GeV, the height
of the “plateaus” in Fig. 41 is related to the p � dis-
tribution of the beam-beam remnant contributions. A
steeper p � distribution means less particles with p � >
0.5 GeV. PYTHIA uses multiple parton scattering to
enhance the underlying event and we have included
these contributions in the beam-beam remnants. For
PYTHIA the height of the “plateau” in Fig. 41
can be adjusted by adjusting the amount of multiple
parton scattering. HERWIG and ISAJET do not
include multiple parton scattering. For HERWIG and
ISAJET the height of the “plateau” can be adjusted
by changing the p � distribution of the beam-beam
remnants.

8.6. Summary and Conclusions
For pp̄ collisions at 1.8 TeV min-bias does not

necessarily imply “soft” physics. There is a lot of
QCD “hard scattering” in the Min-Bias data. We
have studied both “local” leading jet observables and
“global” observables where to fit the data the QCD

Figure 40. QCD “hard scattering” Monte-Carlo
predictions from HERWIG 5.9, ISAJET 7.32, and
PYTHIA 6.115 of the average number of charged
particles (p � > 0.5 GeV and |η| < 1) as a function
of p � (jet#1) (leading charged jet) for the “transverse”
region defined in Fig. 24 arising from the outgoing jets
plus initial and finial-state radiation (hard scattering
component). The curves are corrected for the track
finding efficiency and have an error (statistical plus
systematic) of around 5%.

Figure 41. QCD “hard scattering” Monte-Carlo
predictions from HERWIG 5.9, ISAJET 7.32,
PYTHIA 6.115, and PYTHIA with no multiple
parton scattering (No MS) of the average number
of charged particles (p � > 0.5 GeV and |η| < 1)
as a function of p � (jet#1) (leading charged jet) for
the “transverse” region defined in Fig. 7 arising from
the break-up of the beam and target (beam-beam
remnants). For PYTHIA the beam-beam remnants
include contributions from multiple parton scattering
(see Fig. 19). The curves are corrected for the track
finding efficiency and have an error (statistical plus
systematic) of around 5%.
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Monte-Carlo models have to correctly describe the
entire event structure. Our summary and conclusions
are as follows.

The Evolution of Charge Particle Jets
Charged particle jets are “born” somewhere around

p � (jet) of about 2 GeV with, on the average, about 2
charged particles and grow to, on the average, about
10 charged particles at 50 GeV. The QCD “hard
scattering” models describe quite well (although not
perfectly) “local” leading jet observables such as the
multiplicity distribution of charged particles within
the leading jet, the “size” of the leading jet, the
radial flow of charged particles and p � around the
leading jet direction, and the momentum distribution
of charged particles within the leading jet. In fact,
the QCD “hard” scattering Monte-Carlo models agree
as well with 2 GeV charged particle jets as they do
with 50 GeV charged particle jets! The charge particle
jets in the Min-Bias data are simply the extrapolation
(down to small p � ) of the high p � jets observed in the
JET20 data. For a fixed p � (hard), the QCD “hard”
scattering cross section grows with increasing collider
energy. As the center-of-mass energy of a pp̄ collision
grows, “hard” scattering becomes a larger and larger
fraction of the total inelastic cross section. At 1.8 TeV
“hard scattering” makes up a sizable part of the “hard
core” inelastic cross section and a lot of min-bias events
have 2 TeV or 3 GeV jets.

The “Underlying Event”
A hard scattering collider event consists of large

p � outgoing hadrons that originate from the large p �

partons (outgoing jets) and also hadrons that originate
from the break-up of the proton and antiproton (beam-
beam remnants). The “underlying event” is formed
from the beam-beam remnants, initial-state radiation,
and possibly from multiple parton interactions. Our
data show that the charged particle multiplicity and
scalar p � sum in the “underlying event” grows very
rapidly with the transverse momentum of the leading
charged particle jet and then forms an approximately
constant “plateau” for p � (jet#1) > 6 GeV. The height
of this“plateau” is at least twice that observed in “soft”
collisions at the same corresponding energy.

None of the QCD Monte-Carlo models we examined
correctly describe all the properties of the under-
lying event seen in the data. HERWIG 5.9 and
PYTHIA 6.125 do not have enough activity in the
underlying event. PYTHIA 6.115 has about the right
amount of activity in the underlying event, but as a
result produces too much overall charged multiplicity.
ISAJET 7.32 has a lot of activity in the underlying
event, but with the wrong dependence on p � (jet#1).
Because ISAJET uses independent fragmentation and

HERWIG and PYTHIA do not, there are clear
differences in the hard scattering component (mostly
initial-state radiation) of the underlying event between
ISAJET and the other two Monte-Carlo models. Here
the data strongly favor HERWIG and PYTHIA over
ISAJET.

The beam-beam remnant component of both
ISAJET 7.32 and HERWIG 5.9 has the wrong p �

dependence. ISAJET and HERWIG both predict
too steep of a p � distribution. PYTHIA does a
better job, but is still slightly too steep. It is, of
course, understandable that the Monte-Carlo models
might be somewhat off on the parameterization of
the beam-beam remnants. This component cannot
be calculated from perturbation theory and must be
determined from data. With what we have learned
from the data presented here, the beam-beam remnant
component of the QCD “hard scattering” Monte-Carlo
models can be tuned to better describe the overall
event in pp̄ collisions.
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(1994) 659; L. Lönnblad, Z. Phys. C70 (1996) 107;
Š. Todorova–Nová, DELPHI Internal Note 96-158
PHYS 651; J. Ellis and K. Geiger, Phys. Rev. D54
(1996) 1967, Phys. Lett. B404 (1997) 230; B.R.
Webber, J. Phys. G24 (1998) 287.

57. J. Häkkinen and M. Ringnér, Eur. Phys. J. C5
(1998) 275.
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The Run II jet physics group includes the Jet Algorithms, Jet Shape/Energy Flow, and Jet Measurements/Correlations
subgroups. The main goal of the jet algorithm subgroup was to explore and define standard Run II jet finding procedures for
CDF and DØ. The focus of the jet shape/energy flow group was the study of jets as objects and the energy flows around these
objects. The jet measurements/correlations subgroup discussed measurements at different beam energies; αS measurements;
and LO, NLO, NNLO, and threshold jet calculations. As a practical matter the algorithm and shape/energy flow groups
merged to concentrate on the development of Run II jet algorithms that are both free of theoretical and experimental
difficulties and able to reproduce Run I measurements.

Starting from a review of the experience gained during Run I, the group considered a variety of cone algorithms and KT

algorithms. The current understanding of both types of algorithms, including calibration issues, are discussed in this report
along with some preliminary experimental results. The jet algorithms group recommends that CDF and DØ employ the
same version of both a cone algorithm and a KT algorithm during Run II. Proposed versions of each type of algorithm are
discussed. The group also recommends the use of full 4-vector kinematic variables whenever possible. The recommended
algorithms attempt to minimize the impact of seeds in the case of the cone algorithm and preclustering in the case of the
KT algorithm. Issues regarding precluster definitions and merge/split criteria require further study.

1. Prologue

The Run I jet programs at CDF and DØ made
impressive measurements of the inclusive jet cross
section, dijet angular and mass distributions, and triple
differential cross sections. These measurements were
all marked by statistical accuracy equal or superior
to current theoretical accuracy [1]. However, the
always compelling search for quark compositeness, the
quest to improve the calculational accuracy of QCD,
and the desire to fully understand the composition of
the proton will certainly prompt improvements over
these measurements. Without question, with ∼2 fb−1,
the Run II jet physics program will extend the jet
measurements of Run I to even higher jet energies.

There are three issues, experimental and theoretical,
that currently limit the sensitivity of compositeness
searches and QCD tests: limited knowledge of the
parton distribution functions (pdfs), systematic un-

certainties related to jet energy calibration, and the
limited accuracy of fixed order perturbative calcula-
tions due to the incomplete nature of the calculations
and incomplete specification of jet finding algorithms.
Inadequate knowledge of the pdfs and calibration
are currently the dominant uncertainties, engendering
greater than 50% uncertainties at the largest energies.
The reader may refer to the chapter on Parton Distri-
butions for a complete discussion of pdf measurements.

As mentioned, the uncertainty of NLO perturbative
calculations is due in part to the inherent incomplete-
ness of fixed order calculations. The initial meeting
of the jet physics group included talks on “Leading
Order (LO) Multi-jet Calculations” by Michelangelo
Mangano, “Next-to-Leading Order (NLO) Multi-jet
Calculations” by Bill Kilgore, “Prospects for Next-
to-NLO (NNLO) Multi-jet Calculations” by Lance
Dixon, “Threshold Resummations for Jet Production”
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by Nicolas Kidonakis, “Different Beam Energies” by
Greg Snow, and “α � Measurements in Jet Systems”
by Christina Mesropian. These attempts to improve
the accuracy of perturbative calculations show the
vigorous nature of ongoing efforts and should prove
fruitful before the arrival of Run II data.

Jet algorithms, the other source of calculation uncer-
tainty, start from a list of “particles” that we take to
be calorimeter towers or hadrons at the experimental
level, and partons in a perturbative QCD calculation.
The role of the algorithm is to associate clusters
of these particles into jets such that the kinematic
properties of the jets (e.g., momenta) can be related to
the corresponding properties of the energetic partons
produced in the hard scattering process. Thus the jet
algorithm allows us to “see” the partons (or at least
their fingerprints) in the hadronic final state.

Differences in the properties of reconstructed jets
when going from the parton to the hadron or calorime-
ter level are a major concern for a good jet algorithm.
Each particle i carries a 4-momentum p

�

� , which we
take to be massless. The algorithm selects a set of
particles, which are typically emitted close to each
other in angle, and combines their momenta to form
the momentum of a jet. The selection process is called
the “jet algorithm” and the momentum addition rule
is called the “recombination scheme”. Note that these
two steps are logically distinct. One can, for example,
use one set of kinematic variables in the jet algorithm
to determine the particles in a jet and then construct
a separate set of kinematic variables to characterize
the jets that have been identified. This point will be
important in subsequent discussions.

Historically cone algorithms have been the jet algo-
rithm of choice for hadron-hadron experiments. As
envisioned in the Snowmass algorithm [2], a cone
jet of radius R consists of all of the particles whose
trajectories (assuming no bending by the magnetic
field of the detector) lie in an area A = πR2 of η × φ
space, where η is the pseudorapidity η = − ln tan θ/2.
It is further required, as explained in detail below, that
the axis of the cone coincides with the jet direction as
defined by the E � -weighted centroid of the particles
within the cone (where E � is transverse energy, E � =
E sin θ). In principle, one simply searches for all such
“stable” cones to define the jet content of a given event.

In practice, in order to save computing time, the
iterative process of searching for the “stable” cones
in experimental data starts with only those cones
centered about the most energetic particles in the event
(the so-called “seeds”). Usually, the seeds are required
to pass a threshold energy of a few hundred MeV in
order to minimize computing time. The E � -weighted
centroids are calculated for the particles in each seed

cone and then the centroids are used as centers for
new cones in η × φ space. This procedure is iterated
for each cone until the cone axis coincides with the
centroid. Unfortunately, nothing prevents the final
stable cones from overlapping. A single particle may
belong to two or more cones. As a result, a procedure
must be included in the cone algorithm to specify how
to split or merge overlapping cones [3].

At least part of the uncertainty associated with fixed
order perturbative calculations of jet cross sections
can be attributed to the difficulties encountered when
this experimental jet cone algorithm, with both seeds
and merging/splitting rules, is applied to theoretical
calculations. (See Ref. [1] for a discussion of the CDF
and DØ algorithms.) Neither issue was treated by
the original Snowmass algorithm [2] that forms the
basis of fixed order perturbative cone jet calculations.
Current NLO inclusive jet cross section calculations
(which describe either two or three final state partons)
require the addition of an ad hoc parameter R � ��� [4].
This additional parameter is used to regulate the
clustering of partons and simulate the role of seeds and
merging in the experimentally applied algorithm. In
essence, the jet cone algorithm, used so pervasively at
hadron-hadron colliders, must be modeled in NLO cal-
culations. This modeling results in 2–5% uncertainties
as a function of jet transverse energy E � in calculated
cross sections.

Even worse, with the current cone algorithms, cross
sections calculated at NNLO exhibit a marked sensi-
tivity to soft radiation. As an illustration, consider
two well-separated partons that will just fit inside,
but at opposite sides, of a single cone. With only
the two partons, and nothing in between to serve
as a seed, the current standard cone algorithms will
reconstruct the two partons as two jets. At NNLO
a very soft gluon could be radiated between the two
well-separated partons and serve as a seed. In this
case the single jet solution, with both partons inside,
will be identified by the current cone algorithm. Thus
the outcome of the current cone algorithm with seeds
is manifestly sensitive to soft radiation. Because of
the difficulties inherent with typical usage of the cone
algorithm, the jet algorithm and jet shape/energy flow
subgroups decided to establish an Improved Legacy
Cone Algorithm (whimsically dubbed ILCA). Ideally,
the ILCA should replicate Run I cross sections within
a few percent, but not have the same theoretical
difficulties.

Inspired by QCD, a second class of jet algorithms,
K � algorithms, has been developed. These algo-
rithms successively merge pairs of “particles” in order
of increasing relative transverse momentum. They
typically contain a parameter, D (also called R),
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that controls termination of merging and characterizes
the approximate size of the resulting jets. Since a
K � algorithm fundamentally merges nearby particles,
there is a close correspondence of jets reconstructed
in a calorimeter to jets reconstructed from individual
hadrons, leptons and photons. Furthermore, every
particle in an event is assigned to a unique jet. Most
importantly, K � jet algorithms are, by design, infrared
and collinear safe to all orders of calculation. The
algorithms can be applied in a straightforward way to
fixed–order or resummed calculations in QCD, partons
or particles from a Monte Carlo event generator, or
energy deposited in a detector [5].

However, until recently, a full program for the
calibration of K � algorithms at hadron-hadron col-
liders had not been developed. This was due mostly
to difficulties with the subtraction of energy from
spectator fragments and from the pile-up of multiple
hadron-hadron interactions. Since the K � jets have
no fixed shape, prescriptions for dealing with the extra
energy have been difficult to devise and the use of
K � algorithms at hadron-hadron colliders has been
limited. Also, as with the issue of seeds in the case
of the cone algorithm, there is a practical question
of minimizing the computing time required to apply
the K � algorithm. Typically this is treated in a
preclustering step where the number of “particles”
is significantly reduced before the K � algorithm is
applied. A successful K � algorithm must ensure that
any preclustering step does not introduce the sort of
extra difficulty found with seeds.

Buoyed by the successful use of K � algorithms at
LEP and HERA, eager to benefit from their theoretical
preciseness, and reassured by recent success with
calibration, the jet physics group decided to specify
a standard K � algorithm for Run II.

2. Attributes of the Ideal Algorithm

Although it provided a good start, the Snowmass
algorithm has proved to be incomplete. It does not
address either the phenomena of merging and splitting
or the role of the seed towers with the related soft gluon
sensitivity. Also, jet energy and angle definitions have
varied between experiments. To treat these issues, the
group began discussions with the following four general
criteria:

1. Fully Specified: The jet selection process, the jet
kinematic variables and the various corrections
(e.g., the role of the underlying event) should
be clearly and completely defined. If necessary,
preclustering, merging, and splitting algorithms
must be completely described.

2. Theoretically Well Behaved: The algorithm
should be infrared and collinear safe with no ad
hoc clustering parameters.

3. Detector Independence: There should be no
dependence on cell type, numbers, or size.

4. Order Independence: The algorithms should be-
have equally at the parton, particle, and detector
levels.

The first two criteria should be satisfied by every
algorithm; however, the last two can probably never
be exactly true, but should be approximately correct.

2.1. Theoretical Attributes of the Ideal
Algorithm

The initial efforts of the algorithm working group
were focused on extending and illuminating the list of
desirable features of an “ideal” jet algorithm. From
the “theoretical standpoint” the following features are
desirable and, for the most part, necessary:

1. Infrared safety: The algorithm should not only
be infrared safe, in the sense that any infrared
singularities do not appear in the perturbative
calculations, but should also find solutions that
are insensitive to soft radiation in the event.
As illustrated in Fig. 1, algorithms that look
for jets only around towers that exhibit some
minimum energy activity, called seed towers or
just seeds, can be quite sensitive to soft radiation.
The experimental cone algorithms employed in
previous runs have such seeds.

2. Collinear safety: The algorithm should not only
be collinear safe, in the sense that collinear
singularities do not appear in the perturbative
calculations, but should also find jets that are
insensitive to any collinear radiation in the event.

A) Seed-based algorithms will in general break
collinear safety until the jets are of sufficiently
large E � that splitting of the seed energy be-
tween towers does not affect jet finding (See
Fig. 2). This was found to be the case for
jets above 20 GeV in the DØ data, where jets
were found with 100% efficiency using a seed
tower threshold of 1.0 GeV [6]. The collinear
dependence introduced via the seed threshold is
removed when the jets have sufficient E � to be
reconstructed with 100% efficiency.

B) Another possible collinear problem can arise
if the algorithm is sensitive to the E � ordering
of particles. An example would be an algorithm
where a) seeds are treated in order of decreasing
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E � and b) a seed is removed from the seed list
when it is within a jet found using a seed that is
higher on the list. For such an algorithm consider
the configuration illustrated in Fig. 3. The
difference between the two situations is that the
central (hardest) parton splits into two almost
collinear partons. The separation between the
two most distant partons is more than R but
less than 2R. Thus all of the partons can fall
within a single cone of radius R around the
central parton(s). However, if the partons are
treated as seeds and analyzed with the candidate
algorithm suggested above, different jets will be
identified in the two situations. On the left,
where the single central parton has the largest
E � , a single jet containing all three partons
will be found. In the situation on the right,
the splitting of the central parton leaves the
right-most parton with the largest E � . Hence
this seed is looked at first and a jet may be found
containing only the right-most and two central
partons. The left-most parton is a jet by itself.
In this case the jet number changes depending on
the presence or absence of a collinear splitting.
This signals an incomplete cancellation of the
divergences in the real and virtual contributions
to this configuration and renders the algorithm
collinear unsafe. While the algorithm described
here is admittedly an extreme case, it is not
so different from some schemes used in Run
I. Clearly this problem should be avoided by
making the selection or ordering of seeds and
jet cones independent of the E � of individual
particles.

3. Invariance under boosts: The algorithm should
find the same solutions independent of boosts
in the longitudinal direction. This is par-
ticularly important for pp collisions where the
center-of-mass of the individual parton-parton
collisions is typically boosted with respect to the
pp center-of-mass. This point was emphasized in
conversations with the Jet Definition Group Les
Houches [7].1

4. Boundary Stability: It is desirable that the kine-
matic variables used to describe the jets exhibit
kinematic boundaries that are insensitive to the
details of the final state. For example, the scalar

1The Les Houches group discussed jet algorithms for both
the Tevatron and LHC, and they sharpened their algorithm
requirements by also requiring boundary stability (the kinematic
boundary for the one jet inclusive jet cross section should be
at the same place, ET =

√
s/2, independent of the number of

final state particles), suitability for soft gluon summations of the
theory, and simplicity and elegance.

E � variable, explained in more detail in the next
section, has a boundary that is sensitive to the
number of particles present and their relative
angle (i.e., the boundary is sensitive to the mass
of the jet). The bound E

� � �� =
√
s/2 applies

only for collinear particles and massless jets. In
the case of massive jets the boundary for E � is
larger than

√
s/2. Boundary stability is essential

in order to perform soft gluon summations.

5. Order Independence: The algorithm should find
the same jets at parton, particle, and detector
level. This feature is clearly desirable from the
standpoint of both theory and experiment.

6. Straightforward Implementation: The algorithm
should be straightforward to implement in per-
turbative calculations.

Figure 1. An illustration of infrared sensitivity in
cone jet clustering. In this example, jet clustering
begins around seed particles, shown here as arrows
with length proportional to energy. We illustrate how
the presence of soft radiation between two jets may
cause a merging of the jets that would not occur in the
absence of the soft radiation.

2.2. Experimental Attributes of the Ideal
Algorithm

Once jets enter a detector, the effects of particle
showering, detector response, noise, and energy from
additional hard scatterings from the same beam cross-
ing will subtly affect the performance of even the most
ideal algorithm. It is the goal of the experimental
groups to correct for such effects in each jet analysis.
Ideally the algorithm employed should not cause the
corrections to be excessively large. From an “experi-
mental standpoint” we add the following criteria for a
desirable jet algorithm:
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Figure 2. An illustration of collinear sensitivity in jet
reconstruction. In this example, the configuration on
the left fails to produce a seed because its energy is split
among several detector towers. The configuration on
the right produces a seed because its energy is more
narrowly distributed.

Figure 3. Another collinear problem. In this case
we illustrate possible sensitivity to E � ordering of the
particles that act as seeds.

1. Detector independence: The performance of the
algorithm should be as independent as possible of
the detector that provides the data. For example,
the algorithm should not be strongly dependent
on detector segmentation, energy response, or
resolution.

2. Minimization of resolution smearing and angle
biases: The algorithm should not amplify the in-
evitable effects of resolution smearing and angle
biases.

3. Stability with luminosity: Jet finding should not
be strongly affected by multiple hard scatterings
at high beam luminosities. For example, jets
should not grow to excessively large sizes due to
additional interactions. Furthermore the jet an-
gular and energy resolutions should not depend

strongly on luminosity.

4. Efficient use of computer resources: The jet
algorithm should provide jet identification with
a minimum of computer time. However, changes
in the algorithm intended to minimize the nec-
essary computer resources, e.g., the use of seeds
and preclustering, can lead to problems in the
comparison with theory. In general, it is better
to invest in more computer resources instead of
distorting the definition of the algorithm.

5. Maximal reconstruction efficiency: The jet algo-
rithm should efficiently identify all physically in-
teresting jets (i.e., jets arising from the energetic
partons described by perturbative QCD).

6. Ease of calibration: The algorithm should not
present obstacles to the reliable calibration of the
final kinematic properties of the jet.

7. Ease of use: The algorithm should be straight-
forward to implement with typical experimental
detectors and data.

8. Fully specified: Finally, the algorithm must be
fully specified. This includes specifications for
clustering, energy and angle definition, and all
details of jet splitting and merging.

These experimental requirements are primarily a
matter of optimization under real-life conditions and
will, in general, exhibit complicated sensitivities to
running conditions. They have a strong bearing on
the ease with which quality physics measurements are
achieved. Many of the details necessary to fully imple-
ment the jet algorithms have neither been standardized
nor widely discussed and this has sometimes led to
misunderstandings and confusion. The remainder of
this chapter describes the cone and K � algorithms
discussed and recommended by the QCD at Run II
Jets Group.

3. Cone Jet Algorithms

3.1. Introduction
This section should serve as a guide for the definition

of common cone jet algorithms for the Tevatron and
possibly future experiments. Section 3.2 reviews
the features of previously employed cone algorithms.
Section 3.3 describes a seedless cone algorithm. Sec-
tion 3.4 gives a description of seed-based cone algo-
rithms and discusses the need for adding midpoints
between seeds as alternate starting points for cluster-
ing. Finally, in Section 3.5, we offer a detailed proposal
for a common cone jet algorithm in Run II analyses.
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3.2. Review of Cone Algorithms
Cone algorithms form jets by associating together

particles whose trajectories (i.e., towers whose centers)
lie within a circle of specific radius R in η × φ space.
This 2-dimensional space is natural in pp collisions
where the dynamics are spread out in the longitudinal
direction. Starting with a trial geometric center (or
axis) for a cone in η × φ space, the energy-weighted
centroid is calculated including contributions from all
particles within the cone. This new point in η × φ is
then used as the center for a new trial cone. As this
calculation is iterated the cone center “flows” until a
“stable” solution is found, i.e., until the centroid of the
energy depositions within the cone is aligned with the
geometric axis of the cone. This leads us to our initial
cone algorithm based on the Snowmass scheme [2] of
scalarE � -weighted centers. The particles are specified
by massless 4-vectors (E

�
= |p � |,p �

) with angles(
φ
�
, θ

�
, η

�
= − ln

(
tan(θ

�
/2)
))

given by the direction
from the interaction point with unit vector p̂

�
= p

�
/E

�
.

The scalarE � for each particle is E
�� = E

�
sin(θ

�
). For

a specified geometric center for the cone
(
η

�

, φ
� )

the
particles i within the cone satisfy

i ⊂ C :

√
(η � − η

�

)
2

+ (φ � − φ
�

)
2 ≤ R.

(1)

In the Snowmass algorithm a “stable” cone (and
potential jet) satisfies the constraints

η
�

=

∑
� ⊂ � E

�� η �

E
�

� , φ
�

=

∑
� ⊂ � E

�� φ �

E
�

� (2)

(i.e., the geometric center of the previous equation is
identical to the E � -weighted centroid) with

E
�

� =
∑

� ⊂ �

E
�� . (3)

Naively we can simply identify these stable cones, and
the particles inside, as jets, J = C. (We will return to
the practical issues of the impact of seeds and of cone
overlap below.)

To complete the jet finding process we require a
recombination scheme. Various choices for this recom-
bination step include:

1. Original Snowmass scheme: Use the stable cone
variables:

E
�

� =
∑

� ⊂ �
=

�

E
�� = E

�

� , (4)

η
�

=
1

E
�

�

∑

� ⊂ �
=

�

E
�� η � , (5)

φ
�

=
1

E
�

�

∑

� ⊂ �
=

�

E
�� φ �

. (6)

2. Modified Run I recombination schemes: After
identification of the jet as the contents of the sta-
ble cone, construct more 4-vector-like variables:

E
�
� = E

�� · cos(φ
�
) , (7)

E
�

� = E
�� · sin(φ

�
) , (8)

E
�
� = E

� · cos(θ
�
) , (9)

E
�

� � � � � =
∑

� ⊂ �
=

�

E
�
� � � � � , (10)

θ
�

= tan−1(

√
(E

�

� )2 + (E
�

� )2

E
�

�
) . (11)

A) In Run I, DØ used the scalar E
�

� sum as
defined in Eq. 4 but used the following definitions
for η

�

and φ
�

:

η
�

= − ln

(
tan(

θ
�

2
)

)
, (12)

φ
�

= tan−1(
E

�

�

E
�

�
) . (13)

B) In Run I, CDF used the angular definitions
in Eqs. 12–13 and also replaced the Snowmass
scheme E

�

� with:

E
�

� = E
�

· sin(θ
�

), E
�

=
∑

� ⊂ �

E
�
.

(14)

Note that in the Snowmass scheme the designation
of the centroid quantities η

�

and φ
�

of Eqs. 5 and
6 as a pseudorapidity and an azimuthal angle is purely
convention. These quantities only approximate the
true kinematic properties of the massive cluster that
is the jet. They are, however, approximately equal to
the “real” quantities, becoming exact in the limit of
small jet mass (M

�

<< E � ). Further these quantities
transform simply under longitudinal boosts (i.e., η

�

boosts additively while φ
�

is invariant) guaranteeing
that the jet structure determined with the Snowmass
algorithm is boost invariant. It is also worthwhile
noting that the Snowmass η

�

is a better estimator of
the “true” jet rapidity (y

�

) defined below than the
“true” jet pseudorapidity defined in Eq. 12. The latter
quantity does not boost additively (for M

�

> 0) and
is not a good variable for systematic studies.

While the scalar sum E � is invariant under longi-
tudinal boosts, it is not a true energy variable. This
feature leads to difficulty in resummation calculations:
the kinematic boundary of the jet E � shifts away
from

√
s/2 appropriate for two parton kinematics when
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additional final state partons are included and the
jet acquires a nonzero mass. On the other hand
the Snowmass variables have the attractive feature
of simplicity, involving only arithmetic rather than
transcendental relationships. An alternate choice,
which we recommend here, is to use full 4-vector
variables for the jets.

3. E–Scheme, or 4-vector recombination:

p
�

= (E
�

,p
�

) =
∑

� ⊂ �
=

�

(E
�
, p

�
� , p

�
� , p

�
� ) , (15)

p
�

� =
√

(p
�

� )2 + (p
�

� )2 , (16)

y
�

=
1

2
ln
E

�

+ p
�

�
E

� − p �

�
, φ

�

= tan−1
p

�

�

p
�

�
. (17)

Note that in this scheme one does not use the scalarE �

variable. The 4-vector variables defined above mani-
festly display the desired Lorentz properties. Phase
space boundaries will exhibit the required stability
necessary for all-order resummations. While the
structure of analytic fixed order perturbative calcu-
lations is simpler with the Snowmass variables, NLO
cross section calculations are now also possible with
Monte Carlo programs [8–11]. Such programs are fully
flexible with respect to the choice of variables and the
4-vector variables pose no practical problems. It is
also important to recall that, at least at low orders
in perturbation theory, it is not possible for energy to
be conserved in detail in going from the parton level
to the hadron level. At the parton level the jet will
almost surely be a cluster of partons with non-zero
color charge. At the hadron level the cluster will
be composed of color-singlet hadrons. The transition
between the two levels necessarily involves the addition
(or subtraction) of at least one colored parton carrying
some amount (presumably small) of energy.

One can also employ these true 4-vector variables,
rather than the E � -weighted centroid, in the jet algo-
rithm to find stable cones. While this choice will com-
plicate the analysis, replacing simple arithmetic rela-
tionships with transcendental relationships, the group
recommends that this possibility be investigated. The
goal is to have a uniform set of kinematic variables
with appropriate Lorentz properties throughout the jet
analysis.

At this point it might seem that a simple and
straightforward jet definition would arise from just the
choice of a cone size and a recombination scheme. The
algorithm would then be used to scan the detector
and simply find all stable cones. In practice, this
naive algorithm was found to be incomplete. To keep
the time for data analysis within reasonable bounds

the concept of the seed was introduced. Instead of
looking “everywhere” for stable cones, the iteration
process started only at the centers of seed towers
that passed a minimum energy cut (how could a jet
not have sizeable energy deposited near its center?).
Additionally, in Run I both CDF and DØ reduced
the number of seed towers used as starting points by
consolidating adjacent seed towers into single starting
points. (The actual clustering was always performed
on calorimeter towers.) These types of procedures,
however, create the problems illustrated in Figs. 1, 2
and 3, introducing sensitivity to soft emissions and the
possibility of collinear sensitivity.

The naive Snowmass algorithm also does not address
the question of treating overlapping stable cones. It is
quite common for two stable cones to share some subset
(but not all) of their particles. While not all particles
in the final state need to be assigned to a jet, particles
should not be assigned to more than one jet. Hence
there must be a step between the stable cone stage
and the final jet stage where either the overlapping
cones are merged (when there is a good deal of overlap)
or the shared particles are split between the cones.
Typically cones whose shared energy is larger than a
fixed fraction (e.g., f = 50%) of the energy in the
lower energy cone are merged. For the cases with
shared energy below this cut, the shared particles are
typically assigned to the cone that is closer in η × φ
space. As suggested earlier, the detailed properties
of the final jets will depend on the merge/split step
and it is essential that these details be spelled out in
the algorithm. We provide examples in the following
sections.

3.3. Cone Jets without Seeds
Since many of the issues outlined in the previous

section arise from the use of seed towers to define
the starting point in the search for stable cones, it
is worthwhile to consider the possibility of a seedless
cone algorithm. A seedless algorithm is infrared
insensitive. It searches the entire detector and finds
all stable cones (or proto-jets2), even if these cones
do not have a seed tower at their center. Collinear
sensitivity is also removed, because the structure of the
energy depositions within the cone is unimportant. In
this section we present a preliminary study of such an
algorithm.

3.3.1. Seedless Jet Clustering
We give an example of a seedless algorithm in the

flowchart in Fig. 4. The basic idea [12] follows from the
concept of “flowing” cone centers mentioned earlier.

2At the clustering stage we refer to stable cones as proto-jets.
These may be promoted to jets after surviving the splitting and
merging stage.
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The location of a stable cone will act as an attractor
towards which cones will flow during the iteration
process. If the process starts close to such a stable
center, the flow steps will be small. Starting points
further from a stable center will exhibit larger flow
steps towards the stable center during the iteration.
Starting points outside of the region of attraction
will again exhibit small flow steps. The method
starts by looping through all detector towers3 in some
appropriate fiducial volume. For each tower k, with
center

−→
k =

(
η
�
, φ

� )
, we define a cone of size R

centered on the tower
−→
C

�
=

(
η

� k

= η
�
, φ

� k

= φ
� )
,

i ⊂ C
�

:

√(
η � − η

�
k
)2

+
(
φ � − φ

�
k
)2 ≤ R. (18)

For each cone we evaluate the E � -weighted centroid

−→̄
C

�
=

(
η̄

� k

, φ̄
� k
)
, (19)

η̄
� k

=

∑
� ⊂ �

k E
�� η �

E
�
k�

, φ̄
� k

=

∑
� ⊂ �

k E
�� φ �

E
�
k�

, (20)

E
� k� =

∑

� ⊂ �
k

E
�� . (21)

Note that, in general, the centroid
−→̄
C

�
is not identical

to the geometric center
−→
C

�
and the cone is not stable.

While this first step is resource intensive, we simplify
the subsequent analysis with the next step. If the
calculated centroid of the cone lies outside of the initial
tower, further processing of that cone is skipped and
the cone is discarded. The specific exclusion distance
used in this cut is a somewhat arbitrary parameter and
could be adjusted to maximize jet finding efficiency
and minimize the CPU demand of the algorithm. All
cones that yield a centroid within the original tower
become preproto-jets. For these cones the process of
calculating a new centroid about the previous centroid
is iterated and the cones are allowed to “flow” away
from the original towers. This iteration continues until
either a stable cone center is found or the centroid
migrates out of the fiducial volume. The surviving
stable cones constitute the list of proto-jets. Note
that the tower content of a cone will vary as its center
moves within the area of a single tower. For a cone of
radius R and tower dimension ∆ (in either η or φ) the
minimum change in the cone center location for which
the tower content in the cone changes by at least one
tower is characterized by ∆2/2R. This distance is of
order 0.007 for ∆ = 0.1 and R = 0.7 (i.e., 10% of
a tower width if the diameter of the cone, 2R, is ten
times a tower width).

3While the algorithm may be run on individual detector cells, we
do not believe that cell-level clustering is within the CPU means
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Figure 4. A seedless clustering algorithm.

An even more streamlined option would be to keep
only those cones that yield a stable cone center without
leaving the original tower. Since a trial cone is
originally placed at the center of every tower, the only
distinct stable cone centers missed by this (much!)
faster algorithm correspond to very limited regions
of attraction (less than the area of a tower). Such
situations can arise in only two cases. One possibility
is that there are two (or more) stable directions
within a single tower. The second possibility is that

of current experiments for the largest expected data samples.
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there is a stable direction within a tower but it is
not found starting at the tower center. While both
of these scenarios arise in analyses of realistic data,
they do not constitute cause for concern. Proto-jets
with directions that are nearly collinear (i.e., that
lie within a single tower) will have nearly the same
tower content and be merged with little impact on
the final jet properties. Isolated stable directions with
very small regions of attraction (the second case) are
most likely fluctuations in the background energy level
and not the fingerprints of real emitted partons. In
any case the stable cone centers not found by the
streamlined algorithm invariably correspond to low
E � proto-jets and are well isolated from large E �

proto-jet directions (otherwise they would be attracted
into the larger E � jet). Thus the leading E � jets (after
merging and splitting) found by either the original
seedless algorithm or the streamlined version are nearly
identical.

For practical use it may also be necessary to apply
some minimum E � threshold to the list of proto-jets.
Ideally such a threshold would be set near the noise
level of the detector. However, a higher setting might
be warranted to reduce the sensitivity of the algorithm
to energy depositions by multiple interactions at high
luminosities (see Section 3.3.4 for details of seedless
clustering at the detector level).

In general, a number of overlapping cones, where
towers are shared by more than one cone, will be
found after applying the stable cone finding procedure.
As noted earlier, the treatment of proto-jets with
overlapping regions can have significant impact on the
behavior of the algorithm.

3.3.2. Splitting and Merging Specifications
A well-defined algorithm must include a detailed

prescription for the splitting and merging of proto-jets
with overlapping cones. We provide an outline of
a splitting and merging algorithm in Fig. 5. It is
important to note that the splitting and merging
process does not begin until all stable cones have
been found. Further, the suggested algorithm always
works with the highest E � proto-jet remaining on the
list and the ordering of the list is checked after each
instance of merging or splitting. If these conditions
are not met, it is difficult to predict the behavior of
the algorithm for multiply split and/or merged jets
and similar lists of proto-jets can lead to distinctly
different lists of jets. This undesirable situation does
not arise with the well- ordered algorithm in Fig. 5.
While there will always be some order dependence in a
splitting and merging scheme when treating multiply
overlapping jets, we recommend fixing this order by
starting with the highest E � proto-jet and working

down in the E � ordered list. In this way the action
of the algorithm is to prefer cones of maximal E � .
Note that, after a merging or splitting event, the E �

ordering on the list of remaining proto-jets can change,
since the survivor of merged jets may move up while
split jets may move down. Once a proto-jet shares
no towers with any of the other proto-jets, it becomes
a jet and is not impacted by the subsequent merging
and splitting of the remaining proto-jets. As noted
earlier and illustrated in Fig. 5, the decision to split or
merge a pair of overlapping proto-jets is based on the
percentage of transverse energy shared by the lowerE �

proto-jet. Proto-jets sharing a fraction greater than f
(typically f = 50%) will be merged; others will be split
with the shared towers individually assigned to the
proto-jet that is closest in η×φ space. This method will
perform predictably even in the case of multiply split
and merged jets. Note that there is no requirement
that the centroid of the split or merged proto-jet still
coincides precisely with its geometric center.

3.3.3. Parton Recombination
The definition of calorimeter towers, i.e., a dis-

cretization of (η, φ) space, would be cumbersome in
a theoretical calculation, and is indeed not necessary.
In a theoretical calculation at fixed order, the maximal
number of partons, n, is fixed. With specified parton
momenta, the only possible positions of stable cones
are then given by the partitions of the n parton
momenta, i.e., there are at most 2

� − 1 possible
locations of proto-jets. They are given by the posi-
tions of individual partons, all pairs of partons, all
combinations of three partons, etc. In a perturbative
calculation, e.g. via a NLO Monte Carlo program, the
proto-jet selection of the seedless algorithm can then
be defined as follows:

1. Make a list of centroids for all possible parton
multiplets. These are derived from the coordi-
nates of all parton momenta p � , of all pairs of
parton momenta p � + p � , of all triplets of parton
momenta p � + p � + p � , etc. For each centroid
record which set of partons defines it.

2. Select the next centroid on the list as the center
of a trial cone of radius R.
Go to the split/merge stage if the list of cone
centers is exhausted.

3. Check which partons are inside the trial cone.

4. If the parton list of the centroid and that of the
trial cone disagree, discard the trial cone and go
to (2). If the lists agree, add the set of partons
inside the trial cone as a new entry to the list of
proto-jets.
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Figure 5. A fully specified splitting and merging
algorithm.

As before, different proto-jets may share partons, i.e.
they may overlap. The required split/merge step is
then identical to the calorimeter-level steps (Fig. 5),
with towers replaced by partons as elements of proto-
jets.

In the case of analytic evaluations of the NLO
perturbative jet cross section [13] the integrations over
the multi-parton phase space are divided into various
disjoint contributions. For a jet of fixed E

�

� , η
�

and φ
�

we have only the cases where a) one parton is in the jet
direction with the jet E � , and the other partons are
excluded from nearby directions where they could fit in
a jet cone with the first parton, or b) two partons fit in
a single cone with their centroid properties constrained
to be the jet values. The questions of overlap, splitting

Figure 6. Calorimeter tower E � lego plot for a
simulated large-E � jet event in the DØ Calorimeter.

and merging never arise at this order for R < π/3.

3.3.4. Tests of a Seedless Algorithm
In this section we offer some insight into the per-

formance of the seedless cone algorithm applied to a
detector. We begin by examining a simulated large-E �

jet event in the DØ detector (Fig. 6). The event
was chosen from a sample generated with pythia [14]
using a 160 GeV minimum E � cut at the parton-level
generator. After hadronization, the events were pro-
cessed through a full simulation of the DØ detector.
The towers in the central region (−3.2 < η < 3.2)
are 0.1 × 0.1 in size. Fig. 6 shows the distribution
of calorimeter tower E � ’s for the event in the central
fiducial volume (−2.4 < η < 2.4) where cones of R =
0.7 can be fully contained in the central region. Three
jets clearly dominate the display (along with a less
distinctive feature at the large η boundary near φ = 4).
Fig. 7 shows the E � contained in a cone of radius 0.7
centered at each calorimeter tower, displaying the same
structure for the event in a slightly different language.
We can make this picture even more clear by appealing
to the “flow imagery” of Section 3.3.1. We define a flow
vector as the 2-dimensional vector difference between
the calculated centroid for a cone centered on a tower
and the geometric center of the tower (

−→̄
C

�
− −→C

�
in

Eqs. 18 and 19). This vector vanishes for a stable cone.
This flow vector is plotted in the corresponding range
of η×φ in Fig. 8 for the same pythia generated event.

The flow vector clearly points to the four potential
jets noted above. Cones that are in the neighborhood
of a potential jet exhibit flow vectors of large magni-
tude pointing towards the jet center. This magnitude
will generally be sufficient to cause the cone to fail the
second test in Fig. 4, thus preventing further iteration
of the cone to define a proto-jet. The contours of Fig. 8
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Figure 7. E � in cones centered on each calorimeter
tower (in |η � ��� ��� | < 2.4) for the simulated large-E � jet
event of Fig. 6.

Figure 8. Energy flow for the cones in the large-E � jet
event of Figs. 6–7. The contours bound flow regions
with vector magnitude < 0.1 (solid contours) and <
0.05 (dashed contours) in η × φ.

bound regions of flow with magnitude < 0.1 (solid
contours) and < 0.05 (dashed contours) in η×φ, within
which we expect to find the final jets. It is important
to note the size of the detector regions with small
flow magnitude. Regions with sufficiently small flow
will pass test (2) in the clustering stage and allow the
cone to undergo additional iterations. This ultimately
increases processing time for clustering and complexity
in splitting and merging (due to the production of
many additional proto-jets). The flow magnitude cut
has a natural size on the order of the detector tower
size. For the DØ detector, with a typical towers size

of η × φ = 0.1 × 0.1, the cut would be between the
two contours shown above. A too small magnitude cut
will cause inefficiencies in jet finding; too large a cut
will cause iterations on cones over the whole detector
volume.

It is clear from Figs. 6–8 that the region of interest
around the jets is much smaller than the area contained
within the contours of “stable” cones. There are broad
“plains” of low energy deposition where the flow vector
is of small magnitude, but also of rapidly varying
direction. Stable cones are found in these regions.
But these presumably arise simply from local fluctu-
ations yielding local extrema and are not expected to
correspond to the fingerprints of underlying (energetic)
partons. There are at least two, possibly parallel paths
to follow in order to reduce the impact of these regions
on the analysis, in terms of both required resources
and final results.

As already noted, we can further streamline the
analysis by applying the cut on the flow vector at
each step in the iteration. Thus we keep only those
cones that do not “flow” outside of their original tower
before a stable center is reached. Such an algorithm
converges rapidly to the stable cones pointed to by the
largest magnitude flow vectors in Fig. 8 and efficiently
eliminates most of the cones in the “plains”. We do
lose the stable cones that a full iteration, allowing any
amount of flow, finds in the flat regions of the previous
figures. However, as already emphasized, these cones
do not correspond to the physics we wish to study
with jet analyses. With a large savings in analysis
time the streamlined algorithm finds the same leading
jet properties (e.g., E � and η

�

) as the more complete
algorithm to a fraction of a percent. The final jets
contain typically 120 to 160 towers. The differences
between the leading jets found with the two algorithms
arise from differences in tower content of just 1 or 2
towers (at the cone boundary).

One can also reduce the effort and the final event
complexity by applying a minimum E � cut on the
cones at the proto-jet stage. An obvious choice for
this minimum E � cut would be to place it above the
level of detector noise. As alluded to in Section 3.3.1, a
practical cut might be placed slightly higher to reduce
sensitivity to varying event pileup with changes in
beam luminosity. Unfortunately, this places a rather
arbitrary threshold into the algorithm from the stand-
point of theoretical calculations, i.e. what is the ‘noise’
level at NLO? Additionally, such cuts will in practice
be applied before final jet scale corrections. How
does X GeV uncorrected in the experiment compare to
X GeV at generator level? Such experiment specific
considerations clearly are out of the realm of event
generator design! A possible improvement would be
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Figure 9. A sample event from data. Tower E � lego
plot for an event passing the DØ W → jets trigger.

Figure 10. E � in cones centered on each calorimeter
tower (in |η

�
| < 2.4) for the W → jets sample event

of Fig. 9.

to set a minimum cone E � threshold equal to some
fraction of the scalar E � in the event. In this way such
effects will tend to partially cancel between generators
and experiments, better relating the cut between the
two levels.

We next look at an example of the seedless algorithm
tested on actual calorimeter data. Fig. 9 shows the
tower E � lego plot for a DØ event passing a W → jets
trigger. The trigger required at least two central jets
with E � > 15 GeV. These data were taken at high
luminosity with an average of ∼2.8 interactions per
beam crossing. The two leading jets that pass the
cut are reasonably obvious (along with, perhaps, two
other subleading jets) but overall this event is clearly

Figure 11. Energy flow for the cones in the W → jets
event of Figs. 9–10. The contours bound flow regions
with vector magnitude < 0.1 (solid contours) and <
0.05 (dashed contours) in η × φ.

noisier (more realistic) than the pythia generated
event. This point is illustrated also in Figs. 10 and 11,
which show the cone energy and flow vectors for this
event, analogous to Figs. 7 and 8. In this case the
baseline energy subtraction for calorimeter cell energies
in the data leads to towers with (small) negative energy
deposition.

The increased level of noise and the possibility of
negative tower energy results in two new issues for the
jet analysis that were not observed in the analysis of
the Monte Carlo data. The negative energy cells allow
true stability with respect to the iteration process to
be replaced by limit cycles. Iteration leads not only

to cone center locations for which
−→̄
C

�
− −→C

�
= 0 but

also, for example, to doublets of locations for which−→̄
C1 =

−→
C2 and

−→̄
C2 =

−→
C1, or

−→̄
C1 − −→C1 = −(

−→̄
C2 − −→C2).

Thus continued iteration simply carries the cone center

back and forth between location 1 (
−→
C1) and location 2

(
−→
C2). (More complex multiplets of locations with sets

of 3, or even 6, 2-dimensional flow vectors summing to
0 are also observed.) The good news is that these
clusters of cone centers are typically close by each
other and yield essentially the same final jets, after
merging, independent of where in the limit cycle the
iteration process is terminated. This is guaranteed to
be true for the streamlined algorithm where the entire
cycle must occur within a single tower. (The (η × φ)
distance between two members of such a limiting cycle
driven by a negative tower energy of magnitude E � is
approximatelyR·E � /E � , whereE � is the total energy
in the cone. This can be as small as the minimum
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distance for a change of one tower in the cone as noted
above, i.e., 7% of a tower width.)

The noisy quality of the event leads to an even more
troubling phenomenon. There are so many locally
stable cone centers found in the now rapidly fluctuating
“plain” region that the proto-jet list may exhibit
a surprisingly large number of mutually overlapping
cones. During the merging phase these can coalesce
into jets with large (even leading) E � . This issue has
historically been treated by applying a minimum E �

cut to the proto-jet list before merging and splitting.
With the event studied here a cut of 8 GeV (typical
of values used by DØ) is not sufficient. If we keep all
stable cones with E � > 8 GeV, with no other cuts, as
proto-jets, the merging process builds a leading jet by
pulling together many cones where there is clearly no
real jet. This problem does not arise in the streamlined
algorithm where only stable cones that stayed within
their original tower are kept. In this case the algorithm
identifies the leading jets anticipated intuitively from
the above figures.

3.3.5. Comments on the Seedless Clustering
We may summarize the advantages of the seedless

clustering described above as follows:

1. Avoids undesirable sensitivity to soft and
collinear radiation.

2. Offers increased efficiency for all physically inter-
esting jets.

3. Offers improved treatment of limit cycles and
overlapping cones.

4. “Flow cut” method offers more efficient use of
computer resources than unrestricted seedless
clustering.

We have not investigated further improvements in
the optimization of the computational efficiency for
this seedless algorithm. However, some improvement
may be gained by using the fact that cones centered on
adjacent towers are largely overlapping, thus reducing
the number of towers to sum for each new center.
Other improvements such as region of interest (ROI)
clustering may also be explored.

3.4. Cone Jets with Seeds
In an actual experiment the number of calorimeter

towers may be very large (order 6000 for tower sizes
of ∆η × ∆φ = 0.1 × 0.1 and an η coverage of ±5
units of pseudorapidity). The above seedless algorithm
may then be expensive computationally. The question
arises whether an acceptable approximation of the
seedless algorithm can be constructed, analogous to

the parton-level short cut, while considering primarily
those towers which have energy depositions above a
minimal seed threshold for finding proto-jets.

Seed-based cone algorithms offer the advantage of
being comparatively efficient in CPU time. In a typical
application, detector towers are sorted according to
descending E � and only towers passing a seed cut,

E
� ��� ���� > E

� � � �

� , (22)

are used as starting points for the initial jet cones. This
greatly reduces the number of cones that need to be
evaluated in the initial stage. The seed threshold E

� � � �

�
must be chosen low enough so that variations of E

� � � �

�
lead to negligible variations in any observable under
consideration. The simple seed-based algorithm is
sensitive to both infrared or collinear effects. However,
sensitivity to the splitting of the seed E � between mul-
tiple towers is greatly reduced for larger E � jets. As
stated above, this is true when the jet reconstruction
becomes 100% efficient (i.e., around 20 GeV for jets
in DØ). For fully efficient jet algorithms the collinear
dependency is reduced to a second-order effect, namely,
the effective number of low E � proto-jets that may en-
gage in splitting and merging. In a typical algorithm a
minimum E � cut may also be applied to each proto-jet
to prevent excessive merging of noise and energy not
associated with the hard scattering producing the jets.

3.4.1. Addition of Midpoints
The seedless algorithm discussed previously can be

approximated by a seed-based algorithm with the
addition of ‘midpoints’ in the list of starting seeds.
The idea [15] is to duplicate the parton-level algorithm
discussed in Section 3.3.3, but with partons replaced
by seeds. By adding a starting point for clustering
at the positions given by p � + p� , p � + p � + p � etc.,
the sensitivity of the algorithm to soft radiation as
illustrated in Fig. 1 is essentially removed. Since widely
separated seeds cannot be clustered to a proto-jet, it
is sufficient to only consider those midpoints where all
seeds lie within a distance

∆R < 2.0 ·R �
� � � (23)

of each other.
With these changes, the resulting algorithm is quite

close to those used in Run I of the Tevatron. The
main change is the inclusion of midpoints of seeds
(the p � + p� pairs) and of centers of larger numbers
of seeds as additional seed locations for trial cones.
Two studies of the effects of adding midpoints were
completed during the workshop and are summarized
below. The first checks the infrared safety of the
midpoint algorithm, also called the Improved Legacy
Cone Algorithm (ILCA), in a Monte Carlo study. The
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second tests the effect of adding midpoints on the
performance of the Run I DØ cone algorithm.

3.4.2. Results from a Monte Carlo Study
The request for an infrared and collinear safe jet-

algorithm is most important from the viewpoint of
perturbative QCD calculations. Unsafe algorithms
simply do not permit unambiguous results, once higher
order corrections are considered [16,17]. Instead results
will depend on the technical regularization procedure
adopted in a specific calculation.

The deficiencies of an unsafe algorithm will only
show up at sufficiently high order in the perturbative
expansion. For example, the jet merging due to soft
gluon radiation as depicted in Fig. 1 will only become
a problem when three partons or more can be combined
to a single jet. In hadron collider processes this
first happens in, for example, the NLO corrections to
three-jet production [8], where four-parton final states
are included in the real emission contributions. The
fourth parton is needed to provide the necessary recoil
transverse momentum to the other three partons which
may or may not form a single jet. The NLO three-jet
Monte Carlo is very CPU intensive, however, making
it a cumbersome tool to investigate jet algorithms,
at present. A much faster probe is provided by the
existing NLO dijet Monte Carlos in DIS [10,11].

In ep → ejjX , the electron provides the necessary
recoil p � to the final-state partons. The real emission
QCD corrections at O(α2

� ) thus contain three partons
which can be close together. Their merging to a single
jet, with the concomitant loss of two-jet cross section,
is a probe of the infrared safety of the two-jet vs. one-
jet classification of partonic events. A second probe is
provided by the E � flow inside a jet, which has recently
been modeled with up to three partons in a single jet,
for the current jets in DIS [18].

We have investigated these issues with the mepjet
Monte Carlo [10], which calculates dijet production in
DIS at NLO. The program was run in a kinematical
range typical for HERA, ep collisions at

√
s = 300 GeV

with Q2 > 100 GeV2. Reconstructed jets were required
to satisfy

E � > 10 GeV, −1 < y < 2, R � � < 2,
(24)

where E-scheme recombination is used. Here R � � is
the separation of reconstructed jets in the legoplot.
Following HERA practice, we use a cone size R =
1. Considering jets with a maximal separation of
twice the cone size enhances the statistical significance
of any splitting/merging effects in the Monte Carlo
calculation.

With these settings two cone algorithms are con-

sidered to investigate the importance of extra mid-
points in the perturbative results. The first is the
seedless algorithm in its parton-level implementation
as described in Section 3.3.3, which we here call the
“midpoint” algorithm. In order to test the analog of
tower threshold effects, only partons with E �

� � > E
� � � �

�

are considered for centers of trial cones, i.e., trial
cone centroids are the directions of these partons and
their midpoints p � + p� and p � + p � + p � . The second
algorithm, dubbed “no center seed” is identical, except
that the midpoints are left out as trial cone centers. For
both algorithms, the final splitting/merging decision is
made with an E � -fraction of f = 0.75 of the lower E �

proto-jet as the dividing line.
The mepjet program is based on the phase space

slicing method, with a parameter s � � � defining the
separation between three-parton final states on the
one hand, and the virtual contributions plus soft and
collinear real emission processes (which cancel the
divergences of the virtual graphs) on the other. This
dividing line is completely arbitrary and observables
should not depend on it. A test of this requirement
is shown in Fig. 12 where the dijet cross section
within the cuts of Eq. 24 is shown as a function
of s � � � . Whereas the midpoint algorithm shows
s � � � -independence within the statistical errors of the
Monte Carlo (plain symbols), leaving out the mid-
points between partons leads to a pronounced decrease
of the cross section as s � � � becomes smaller. Smaller
s � � � implies that more events are generated as explicit
three-parton final states. The additional soft gluons
act as extra seeds that tend to merge the two jets,
leaving the event classified as a one-jet event, which
does not contribute to the plotted dijet cross section.
The s � � � dependence of the “no center seed” algorithm
means that no perturbative prediction is possible for
this algorithm: as s � � � approaches zero, the dijet cross
section diverges logarithmically as log s � � � /Q2.

Even when fixing s � � � to some typical soft QCD
scale, like s � � � = 0.03 GeV2, the “no center seed” algo-
rithm has fatal defects. This is demonstrated in Fig. 13
where the variation of the dijet cross section within
the cuts of Eq. 24 is shown as a function of “tower
threshold” transverse energy E

� � � �

� . The midpoint
algorithm is almost independent of this threshold, as
long as E

� � � �

� is less than about 10% of the jet trans-
verse energy. The “no center seed” algorithm, on the
other hand, shows a pronounced threshold dependence,
raising the specter of substantial dependence of jet
cross sections on detector thresholds, detector response
to soft particles and nonperturbative effects. These
effects have been discussed previously for three-jet
events at the Tevatron [8,16].

Discarding the “no center seed” algorithm we turn to
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Figure 12. Dependence of the DIS dijet cross section
on s ����� for the ILCA algorithm with midpoints (plain
symbols) and for the “no center seed” algorithm
(diamonds).

internal E � flow inside a single jet as another measure
of the performance of jet algorithms. The differential
jet shape, ρ(r), is defined as 1/∆r times the average
E � fraction of a jet in a narrow ring of width ∆r, a
distance r from the jet axis. In Fig. 14 the differential
jet shape is shown for current jets at HERA, in the
phase space region

E � > 14 GeV , −1 < η < 2 (25)

for DIS events with Q2 > 100 GeV2. Results are shown
for the midpoint (ILCA) and the K � algorithm (to
be described later) at NLO (O(α2� )). The midpoint
algorithm produces wider jets than the K � algorithm
with D = R, as is to be expected since two partons
with a separation slightly less than 2R can be clustered
by the midpoint, but not the K � algorithm. NLO
corrections are quite small for the midpoint algorithm.
We have also checked that the jet shapes in the
midpoint algorithm exhibit good scale dependence at
NLO, similar to the K � algorithm [18].

3.4.3. Results from Data Study
A midpoint algorithm has previously been employed

by the OPAL Collaboration [19]. We now report a

Figure 13. Dependence of the DIS dijet cross section
on the seed threshold E

������	
� of Eq. 22. Results are

shown for ILCA, with midpoints (plain symbols) and
for a “no center seed” variant (diamonds).

study performed using the DØ data. The data were
acquired from a two-jet trigger sample with an average
of 2.8 interactions per beam crossing. The goal of the
data-based study was to test the sensitivity of DØ’s
Run I cone algorithm to the addition of midpoints.
To facilitate a direct comparison of Run II jet results
with the current data it is desirable that algorithms
supported4 for the new data produce similar results.

Details in the DØ Run I jet algorithm forced the
splitting and merging of jets to occur as they are found.
In effect this defines an order dependence based on
the seed E � of the jets. It was possible to test two
orderings in the jet clustering. In the first case, jets
were initially found around all seed towers above a
1 GeV threshold, then around all midpoints. In the
second case they were first found around all midpoints
between seed towers, then around the seed towers
themselves. Fig. 15 shows the E � distributions for
three trials, the legacy seed, seed + midpoint, and
midpoint + seed trials. Also shown are the ratios of
the E � spectra. A cone radius of 0.7 was used.

4While any number of jet algorithms may in principle be
included in an offline analysis stream, in practice only a few
algorithms will typically be fully supported by detailed energy
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Figure 14. Jets shapes in ILCA (dashed line) compared
to K � (solid line).

There are two effects to observe in Fig. 15. First, the
addition of midpoints tends to cause an increase in the
number of low E � jets. This is because the midpoints
are effectively zero threshold seeds, therefore very soft
jets that tend to fail reconstruction by falling short of
the seed requirement may sometimes be reconstructed
around a midpoint. Second, the results are different
depending on the order in which the seeds + midpoints
are used. However, we can safely conclude that
the addition of midpoints has little more than a few
percent effect on the experimental jet E � distribution.

Fig. 16 shows the ratio of the leading jet for the
legacy seed and midpoint + seed algorithms. Since a
meaningful test requires the comparison of the same
jets, the jets were also required to be matched within
a radius of 0.2 (in ∆η × ∆φ) to prevent accidental
comparisons of unrelated jets due to ‘flipping’ of
the jet order between algorithms. Fig. 17 shows
the fractions of isolated, merged, split, and multiply
split/merged jets for the legacy seed and midpoint +
seed algorithms. In each case only small variations are
observed between the two algorithms, indicating that
a legacy cone algorithm augmented by midpoints is
an acceptable choice for comparisons to Run I physics
results. In fact, Figs. 15 and 16 represent extreme
deviations in jet E � , since E � differences are expected
to be reduced after application of jet energy corrections

scale, resolution, and efficiency corrections.

Figure 15. Jet E � distributions and ratios. Top: Jet
E � distributions for the three algorithms overlayed.
Legacy seeds (large circles), seeds + midpoints (stars),
midpoints + seeds (small circles). Middle: Seeds +
midpoint distribution divided by the legacy distribu-
tion. Bottom: Midpoint + seeds distribution divided
by the legacy distribution.

appropriate to each algorithm.

3.5. Proposals for Common Run II Cone Jet
Algorithms

The cone algorithm starts with a cone defined in
E-scheme variables as

i ⊂ C :

√
(y

� − y �

)
2

+ (φ
� − φ �

)
2 ≤ R.

(26)

where for massless towers, particles, or partons y
�

= η
�

.
The E-scheme centroid corresponding to this cone is
given by

p
�

= (E
�

,p
�

) =
∑

� ⊂ �

(E
�

, p
�

� , p
�

� , p
�

� ) , (27)

ȳ
�

=
1

2
ln
E

�

+ p
�

�

E
� − p �

�
, φ̄

�

= tan−1
p

�

�

p
�

�
. (28)

A jet arises from a “stable” cone, for which ȳ
�

= y
�

=
y

�

and φ̄
�

= φ
�

= φ
�

, and the jet has kinematic
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Figure 16. E � ratios for leading jets. The ratio
of leading jet E � in the midpoint algorithm is
plotted as a function of the legacy cone jet’s E � .

properties

p
�

= (E
�

,p
�

) =
∑

� ⊂ �
=

�

(E
�
, p

�
� , p

�
� , p

�
� ) , (29)

p
�

� =
√

(p
�

� )2 + (p
�

� )2 , (30)

y
�

=
1

2
ln
E

�

+ p
�

�
E

� − p �

�
, φ

�

= tan−1
p

�

�

p
�

�
. (31)

Seedless algorithm. For a seedless algorithm we
recommend the streamlined jet algorithm defined in
Section 3.3.1 that includes the flow cut for compu-
tational efficiency improvement and reduction of soft
proto-jet construction. The clustering or jet finding
should be done in terms of E-scheme variables.

Seed–based algorithm or ILCA. Backwards compat-
ibility is important here as well as common specifica-
tions between experiments. For the Run II algorithm
we recommend that jet clustering commence on each
seed tower (rather than consolidated seeds as in Run I),
for simplicity of the algorithm and to reduce depen-
dencies on detector segmentation. Since the finding
of proto-jets is determined by the seed threshold, it is
reasonable to determine the midpoints based on the
positions of the proto-jets rather than the seed list
itself, as illustrated in Fig. 18. This would reduce the
number of midpoints to be calculated due to the large
combinatorics caused by adjacent seed towers within
jet cones.

Figure 17. A view of splitting and merging
fractions in the legacy seed (solid) and midpoint
+ seed algorithms (dotted).

Specifications Summary We list here the precise
specifications of the jet algorithms and variables:

1. R �
� � � : 0.7

2. p
� � � �

� : 1.0 GeV

3. Recombination: E-scheme

4. Midpoints: Added after cone clustering

5. Split/Merge: p � ordered, threshold = 50% of
lower p � jet

6. Reported kinematic variables: E-scheme, either
directly as (E

�

,p
�

) or as (m
�

, p � �

, y
�

, φ
�

),
where m

�

is the mass of the jet (m
�

=√
E

� 2 − p
� 2

).

4. K � Jet Algorithms

4.1. Introduction
This section provides a guide for the definition of K �

jet algorithms for the Tevatron. Section 4.2 describes
the recommended algorithm in detail. Section 4.3
discusses preclustering of particles, cells, or towers for
both the CDF and DØ experiments. Sections 4.4
and 4.5 outline momentum calibration of the K �

algorithm and briefly describe jet resolution. Finally,
in Section 4.6, we provide a few examples of the
versatility of the K � algorithm.
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Figure 18. Method for addition of midpoints.

4.2. The Run II K � Algorithm
In this section we propose a standard K � jet al-

gorithm for Run II at the Fermilab Tevatron. This
proposal, based on studies of the K � algorithm by
several groups [20–22], establishes a common algorithm
that satisfies the general criteria presented in Section
1.

The K � jet algorithm starts with a list of preclusters
which are formed from calorimeter cells, particles, or
partons.5 Initially, each precluster is assigned a vector

(E,p) = E (1, cosφ sin θ, sinφ sin θ, cos θ)
(32)

where E is the energy associated with the precluster,
φ is the azimuthal angle, and θ is the polar angle
with respect to the beam axis. For each precluster,
we calculate the square of the transverse momentum,
p2� , using

p2� = p2� + p2
� (33)

and the rapidity, y, using6

y =
1

2
ln
E + p �
E − p �

. (34)

5Preclustering is discussed in detail in Section 4.3.
6To avoid differences in the behavior of the algorithm due to
computational precision when |y| is large, we assign y = ±10 if
|y| > 10.

A flowchart of the K � algorithm is shown in Fig. 19.
Starting with a list of preclusters and an empty list of
jets, the steps of the algorithm are as follows:

1. For each precluster i in the list, define

d � = p2�
� � . (35)

For each pair (i, j) of preclusters (i 6= j), define

d � � = min
(
p2�

� � , p
2�

� �
) ∆R2� �

D2

= min
(
p2�

� � , p
2�

� �
) (y � − y � )2 + (φ � − φ � )2

D2
(36)

where D ≈ 1 is a parameter of the jet algorithm.
For D = 1 and ∆R � � � 1, d � � is the minimal
relative transverse momentum k⊥ (squared) of
one vector with respect to the other.

2. Find the minimum of all the d � and d � � and label
it d � � � .

3. If d � � � is a d � � , remove preclusters i and j from
the list and replace them with a new, merged
precluster (E � � ,p � � ) given by

E � � = E � +E � , (37)

p � � = p � + p� . (38)

4. If d � � � is a d � , the corresponding precluster i
is “not mergable.” Remove it from the list of
preclusters and add it to the list of jets.

5. If any preclusters remain, go to step 1.

The algorithm produces a list of jets, each separated
by ∆R > D. Fig. 20 illustrates how the K � algorithm
successively merges the preclusters in a simplified
diagram of a hadron collision.

The K � algorithm presented above is based on
several slightly different K � jet clustering algorithms
for hadron colliders [20–22]. The main differences have
to do with (1) the recombination scheme and (2) the
method of terminating the clustering. The choices
in the proposal above are discussed in the following
paragraphs.

The recombination scheme was investigated by
Catani et al. [20]. We elect to use the covariant
E-scheme (Eqs. 37–38), which corresponds to vector
addition of four-momenta, because our goals are

1. conceptual simplicity,

2. correspondence to the scheme used in the K �

algorithm for e+e− collisions [23],
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Figure 19. The K � jet algorithm.

3. absence of an energy defect [24], and

4. optimum suitability for the calibration method
described in Section 4.4. [25]

The prescription of Catani, et al. [20,21] introduces
a stopping parameter, d � � � , that defines the hard scale
of the physics process and separates the event into
a hard scattering part and a low-p � part (“beam
jets”). Catani et al. suggest two ways to use the
d � � � parameter. First, d � � � can be set to a constant
value a priori, and when d � � � > d � � � the algorithm
stops. At this point, all previously identified jets
with p2� < d � � � are classified as beam jets, and all
remaining preclusters with p2�

� � > d � � � are retained as
hard final-state jets. Alternatively, an effective d � � �

can be identified on an event-by-event basis so that
clustering continues until a given number of final-state
jets are reconstructed.

Beam

Beam

Beam

Beam

Beam

Beam

*

*

*

*

*

Figure 20. A simplified example of the final state of a
hadron collision. The open arrows represent preclus-
ters in the event, and the solid arrows represent the
final jets reconstructed by the K � algorithm. The six
diagrams show successive iterations of the algorithm.
In each diagram, either a jet is defined (when it is well
separated from all other preclusters), or two preclusters
are merged (when they have small relative k⊥). The
asterisk labels the relevant precluster(s) at each step.

Unlike Catani, et al., the algorithm proposed by
Ellis and Soper [22] continues to merge preclusters
until all jets are separated by ∆R > D. We have
adopted this choice. Besides its simplicity, this method
maintains a similarity with cone algorithms in hadron
collisions. Whereas the use of d � � � is well suited for
defining an exclusive jet cross section (typical of e+e−

collisions), we desire an algorithm that defines inclusive
jet cross sections in terms of a single angular resolution
parameterD, which is similar to R for cone algorithms.

4.3. Preclustering
As described in the previous section, the input to

the K � jet algorithm is a list of vectors, or preclusters.
Ideally, one should be able to apply the K � algorithm
equally at the parton, particle, and detector levels,
with no dependence on detector cell type, number of
cells, or size. The goal of preclustering is to strive
for order independence and detector independence by
employing well-defined procedures to remove (or re-
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duce) the detector-dependent aspects of jet clustering.
Practically, however, this independence is very difficult
to achieve. For example, if a single particle strikes the
boundary between two calorimeter towers, two clusters
of energy may be measured. Conversely, two collinear
particles may shower in a single calorimeter tower
so that only one vector is measured experimentally.
Preclustering all vectors within a radius larger than
the calorimeter tower size removes this problem.

At the parton and particle levels, the simplest
possible preclustering scheme is to identify each parton
or particle four-vector as a precluster. Experimen-
tally, differences between the geometries of the CDF
and DØ calorimeters necessitate different preclustering
schemes. In particular, the DØ discussion describes
how the preclustering scheme can be used to control
the number of preclusters passed to the K � algorithm
in order to keep the jet analysis computationally
feasible. It can also be used to ensure that the
preclusters all exhibit positive energy. Candidate
schemes to achieve these goals are described in detail
in the following sections. However, it is important that
the preclustering scheme does not introduce the sort of
problems with infrared or collinear sensitivities that we
earlier discussed for the case of seeds.

4.3.1. CDF Preclustering
The CDF calorimeter system for Run II [26] consists

of 1,536 towers. Each tower consists of an electro-
magnetic (EM) component and a hadronic (HAD)
component. In order to form preclusters for input to
the K � algorithm, we propose the following:

1. Measure the amount of EM energy deposited
into each calorimeter tower, E � � , and form the
vector (E � � ,p � � ) where

p � �
� � = E � � cosφ sin θ � � , (39)

p � �
� � = E � � sinφ sin θ � � , (40)

p � �
� � = E � � cos θ � � . (41)

Likewise, measure the amount of HAD energy
deposited into each calorimeter tower, E � ��� ,
and form the vector (E � ��� ,p � ��� ) where

p � � � ��� = E � ��� cosφ sin θ � ��� , (42)

p � � � ��� = E � ��� sinφ sin θ � ��� , (43)

p � � � ��� = E � ��� cos θ � ��� . (44)

The angles θ � � , θ � ��� and φ specify the position
of the calorimeter tower components with respect
to the interaction point. Note that θ � � and
θ � ��� may take on slightly different values when
calculated using different interaction points along
the beam axis (see Fig. 21).

2. For each calorimeter tower, calculate a vector
(E,p) by summing the vectors for the EM and
HAD components:

(E,p) = (E � � +E � ��� , p � � + p � ��� )
(45)

3. For each calorimeter tower, calculate the p � from
its associated vector using

p � =
√
p2� + p2�

= E � � sin θ � � +E � ��� sin θ � ��� . (46)

4. Assemble a list of tower vectors for which

p � > p
� � �� , (47)

where p
� � �� ≈ 100 MeV.7 These are the preclus-

ters for the K � algorithm.

In designing the CDF preclustering scheme, the
primary goal was simplicity. We made every attempt
to maintain a close relationship between the physical
calorimeter towers and the input preclusters for the
K � algorithm.

θEM

HADθ

HAD

EM

Figure 21. Schematic of a single CDF calorimeter
tower.

4.3.2. DØ Preclustering
The K � jet algorithm is an O(n3) algorithm, where

n is the number of vectors in the event [20]. Limited
computer processing time does not allow this algorithm

7This pT cut is designed to retain towers with energies well above
the level of electronic noise. The exact value for this pT cut will
depend on measurements of calorimeter performance.
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to run on the ∼ 45000 cells or even the ∼ 6000
towers of the DØ calorimeter. Therefore, we employ
a preclustering algorithm to reduce the number of
vectors input to the algorithm. Essentially, towers are
merged if they are close together in η × φ space, or
if they have small p � (or negative p � , as explained
below). The preclustering algorithm described below
was used by the DØ experiment in Run I. We examine
the effects of the Run I preclustering algorithm, and
discuss possible alternatives for Run II. Although the
effects of preclustering on jet observables should be
small, this is analysis and detector dependent. A
Monte Carlo study of preclustering effects on the jet
p � and on jet structure is also presented.

In Run I, one use of preclustering was to account
for negative energy calorimeter towers [27] which can
cause difficulties for the K � algorithm. In the DØ
calorimeter, we measured the difference in voltage be-
tween two readings (peak minus base), as illustrated in
Fig. 22. To first order, this online baseline subtraction
technique removes the effect of luminosity-dependent
noise in the calorimeter, on a tower-by-tower basis.
Residual fluctuations in each reading, however, some-
times lead to measured energies which are negative.
One can imagine at least four ways to deal with these
negative energy towers.

1. Absorb the negative energy into a precluster of
towers such that the overall precluster energy is
positive, as will be discussed here.

2. Add an offset to all tower energies so that there
are none with negative energy. The offset could
then be removed later in the analysis.

3. Ignore all towers with negative energy, i.e., re-
move them from the jet analysis.

4. Proceed with the K � algorithm analysis includ-
ing the negative energy towers, assuming that
their impact is negligible. Recall that in the
cone algorithm case the negative energy towers
are the source of the observed limit cycles for
quasi-stable cones, which does not seem to be a
serious problem.

Clearly, further studies of this issue are required. The
precluster scheme can also be used to absorb low p �

towers similarly to what is done for negative energy
towers.

The Run I preclustering algorithm, which is em-
ployed in the following studies, has six steps:

1. Identify each calorimeter cell with a 4-vector
(E,p) = E (1, cosφ sin θ, sinφ sin θ, cos θ) where

Current crossing

v

ttptb

Previous crossing, L interactions
Previous crossing, M interactions
Previous crossing, N interactions

L > M > N

Figure 22. Schematic of voltage in a calorimeter
cell as a function of time. The solid line shows
the contribution for a given event (the current
crossing). The cell is sampled once at t � , just
before a pp̄ bunch crossing, to establish a base
voltage. The voltage rises during the time it takes
electrons to drift in the liquid argon gap (∼500 ns),
and reaches a peak value at t � ≈ 2µs, which is
set by pulse-shaping amplifiers in the signal path.
The cell is sampled again at t � , and the voltage
difference ∆V = V (t � ) − V (t � ) is proportional to
the raw energy in the cell. Because the decay time
of the signal τ ≈ 30µs is much larger than the
accelerator bunch crossing time t � = 3.5µs, V (t � )
may have a contribution from a previous bunch
crossing. The size of this contribution is related
to the number of pp̄ interactions in the previous
crossing, which depends on the beam luminosity.
The dashed lines show an example contribution
from a previous bunch crossing containing three
different numbers of pp̄ interactions. The figure
is not drawn to scale.

E is the measured energy in the cell. For each
cell, define

p � =
√
p2� + p2� = E sin θ (48)

and

η = − ln

(
tan

θ

2

)
. (49)

2. Remove any calorimeter cells with p � < −500
MeV. Cells with slightly negative p � are allowed
due to pileup effects in the calorimeter, but cells
with highly negative p � are very rarely observed
in minimum bias events and are thus considered
spurious, so they are removed.

3. For each calorimeter tower, sum the transverse
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momenta of cells within that tower:

p
� � � � �� =

∑
� � � � ∈ � ��� ���

p
� � � �� . (50)

4. Merge towers if they are close together in η × φ
space:

(a) Form an η-ordered (from most negative to
most positive) list of towers; towers with
equal η are ordered from φ = 0 to φ = 2π.

(b) Remove the first tower in the list and call it
a precluster.

(c) From the remainder of the list, find the
closest tower to the precluster.

(d) If they are within ∆R � =
√

∆η2 + ∆φ2 =
0.2, remove the closest tower from the list,
and combine it with the existing precluster,
forming a new precluster; go to 4c.

(e) If any towers remain, go to 4b.

5. Preclusters which have negative transverse mo-
mentum p � = p � − < 0 are redistributed to
neighboring preclusters. Given a negative p �

precluster with (p � −, η−, φ−), we define a search
square of size (η− ± 0.1) × (φ− ± 0.1). If the
vector sum of positive p � in the search square is
greater than |p � −|, then p � − is redistributed to
the positive p � preclusters in the search square.
Otherwise, the search square is increased in steps
of ∆η = ±0.1 and ∆φ = ±0.1, and redistribution
is again attempted. If redistribution still fails
with a search square of size (η−±0.7)×(φ−±0.7),
the p � of the negative momentum precluster is
set to zero.

6. Preclusters which have p � < p
�

� = 200 MeV
are redistributed to neighboring preclusters, as
in step 5. We make the additional requirement
that the search square have at least three positive
p � preclusters, to reduce the overall number of
preclusters. The threshold p

�

� was tuned to
produce ∼ 200 preclusters/event, as shown in
Fig. 23, to fit processing time constraints. Next,
jets are reconstructed from the preclusters.

In steps 4–6, the combination followed a Snowmass
style prescription:

p � = p �
� � + p �

�
� , (51)

η =
p �

� � η � + p �
� � η�

p �
� � + p �

�
� , (52)

φ =
p �

� � φ � + p �
�
� φ �

p �
� � + p �

�
� . (53)

As a minimal change to the Run I preclustering
algorithm, a possible Run II preclustering proposal
should instead use vector addition of four-momenta.
The Run II preclustering algorithm should also use y
(as defined by Eq. 34) instead of η and a true 2-vector
p � rather than the scalar p � of Eq. 51. Generally, the
definitions of variables and recombination scheme in
the preclustering algorithm should match the choices
used in the proposed K � jet algorithm. All of the
results presented here used the Run I preclustering
algorithm.
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Figure 23. The number of preclusters per event,
as a function of minimum precluster transverse
energy E

�

� . The DØ data were preclustered
with the choice E

�

� = 200 MeV, which produced
∼200 preclusters per event. With the preclusters
treated as massless, E � is the same as p � . This
identification is certainly appropriate for individual
calorimeter towers.

The preclustering radius ∆R � in step 4 of the
algorithm above can be used to test the sensitivity
of jets to the calorimeter segmentation size, ∆φ ×
∆η = 0.1 × 0.1 (or smaller) in the DØ calorimeter.
Preclustering with ∆R � = 0.2 > ∆η or ∆φ in step 4 of
the algorithm mimics a coarser calorimeter. This effect
was studied in a sample of herwig Monte Carlo QCD
jet events. The jets in the hard 2→ 2 scattering were
generated with p � > 50 GeV, and at least one of the
two leading order partons was required to be central
(|η| < 0.9). The events were passed through a full
simulation (including luminosity L ≈ 5×1030cm−2s−1)
of the DØ detector. The MC sample is described in
more detail in Section 4.4.1. Fig. 24 shows the number
of preclusters with ∆R � = 0.2 is ∼180, reduced by
37% from that obtained with ∆R � = 0. Fig. 25 shows
that preclustering is necessary even at the particle level
in the Monte Carlo, reducing the number preclusters
by 24%. Comparing Figs. 24 and 25, the number
of preclusters in the detailed detector simulation is a
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factor 2.4 higher than at the particle level for ∆R � = 0.
Most of the additional preclusters are reconstructed
near the beampipe and some are due to localized
deposits of low energy. With ∆R � = 0.2, the number
of preclusters increases only by a factor 2.0.

Figure 24. Distribution of the number of preclusters
per event, with ∆R � = 0.2 (solid), and with ∆R � = 0
(dash). Taken from a sample of QCD jet events
from MC data. The jets were reconstructed using
the calorimeter simulation, including the luminosity
simulation. The preclustering radius ∆R � = 0.2
reduces the mean number of preclusters per event by
37%.

The effect of the preclustering radius ∆R � on jets
and jet structure was examined next. Fig. 26 shows
the comparison of the leading jet p � with ∆R � = 0.2
to that with ∆R � = 0. The jets were reconstructed
with the K � jet algorithm D = 0.5. The preclustering
radius ∆R � = 0.2 (step 4 of the preclustering algo-
rithm) reduces the mean jet p � by 0.7 GeV. Evidently,
the preclustering algorithm assigns energy differently
than the K � algorithm. It is difficult to track exactly
which towers end up in each jet, in part because of
the redistribution of energy in steps 5 and 6 of the
preclustering algorithm. The net effect is that some
energy belonging to the leading jet when ∆R � = 0
is transferred to non-leading jets when ∆R � = 0.2.
The shift in the leading jet p � spectrum is visible in
the top panel of Fig. 26, and the ratio in the bottom

Figure 25. Same as in Fig. 24, except the jets were
reconstructed in MC data at the particle level, with
no calorimeter or luminosity simulation. The same
preclustering radius ∆R � = 0.2 reduces the mean
number of preclusters per event by 24%
.

panel suggests some dependence on the jet p � . Such
a shift may need to be corrected for in the Run II
experimental data, but will be different due to the
change in calorimeter electronics. In Run I, a cor-
rection was not explicitly applied to the experimental
data for this effect. Instead, the theoretical predictions
included the identical preclustering algorithm used
in experimental data. Fortunately, the particle-level
result for leading jet p � is not as sensitive to ∆R � . This
is shown in Fig. 27. Note that even the particles in the
Monte Carlo were projected into a calorimeter-like grid
(∆φ×∆η = 0.1 × 0.1) by the preclustering algorithm.
If this were not the case, then we would expect an even
larger effect than illustrated in Fig. 27.

The jet structure, however, is more sensitive to the
preclustering radius ∆R � . Fig. 28 shows the average
subjet multiplicity, as a function of y � � � (see Section
4.6.1), in particle-level jets. There are more subjets in
jets when ∆R � = 0, compared to when ∆R � = 0.2.
Requiring preclusters to be separated by ∆R � affects
the subjet structure below

y � � � <

(
∆R �

2D

)2

< 10−1 � 4. (54)
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Figure 26. The top panel shows the distribution of
the leading jet p � with ∆R � = 0.2 (solid), and with
∆R � = 0 (dash). Measured in a sample of QCD
jet events from MC data. The sample was generated
with minimum parton transverse momentum p

� � �� =
50 GeV. The K � jets were reconstructed with D = 0.5
in the calorimeter simulation, including the luminosity
simulation. The preclustering radius ∆R � = 0.2
reduces the mean of the leading jet p � by 0.7 GeV.
The bottom panel shows the ratio of the histograms in
the top panel.

Again, the subjet multiplicity is increased even further
when particles in the Monte Carlo are not projected
into a calorimeter-like grid (∆φ × ∆η = 0.1 × 0.1).
This underscores the fact that the same preclustering
algorithm, as well as the same jet algorithm, must be
used in any comparisons of theoretical predictions to
experimental data which are sensitive to internal jet
structure at the level of the detector granularity.

4.4. Momentum Calibration of K � Jets at DØ
Jet production is the dominant process in pp col-

lisions at
√
s = 1.8 TeV, and almost every physics

measurement at the Tevatron involves events with
jets. A precise calibration of measured jet momentum
and energy, therefore, is of fundamental importance.
Although the use of a K � algorithm is well defined
theoretically, questions have recently arisen regarding
the performance of the algorithm in a high luminosity
hadron collider environment.

The DØ Collaboration developed a method to cal-

Figure 27. Same as in Fig. 26, except the jets were
reconstructed in MC data at the particle level, with
no calorimeter or luminosity simulation. The same
preclustering radius ∆R � = 0.2 reduces the mean of
the leading jet p � by 0.25 GeV. The bottom panel
shows the ratio of the histograms in the top panel.

ibrate K � jets to a high level of accuracy. The
details are discussed thoroughly in Ref. [28,29]. Here,
we briefly summarize this work by the DØ Collab-
oration to illustrate instrumentation effects on the
K � algorithm, as well as its behavior in a high
luminosity hadron collider. The K � jets momentum
scale correction is largely based on the calibration of
cone jets, extensively discussed in a recent article [27].
The derivation of the momentum scale correction is
performed for K � jets with D = 1. The measured
jet momentum, p

� � � �� � � , is corrected to that of the

final-state particle-level jet, p
� � � �� � � , using the following

relation:

p
� � � �� � � =

p
� � � �� � � − p �

R � � �
, (55)

where p � denotes a momentum offset correction for un-
derlying event, uranium noise, pile-up, and additional
pp interactions. R � � � is the calorimeter momentum
response to jets. Note that the equation is missing
the out-of-cone showering loss factor. In cone jets,
this factor corrects for the fraction of the energy
of the final-state hadrons which is lost outside the
cone boundaries due to calorimeter showering. This
is an instrumentation effect completely unrelated to

70



Figure 28. The average subjet multiplicity, as a
function of y � � � , in a sample of jets reconstructed in
MC data at the particle level, with no calorimeter
or luminosity simulation. The solid curve shows the
results with ∆R � = 0, and the dashed curve shows
the results with ∆R � = 0.2. The preclustering radius
∆R � = 0.2 reduces the average subjet multiplicity for
y � � � < 10−1 � 4.

parton showering losses outside the cone. There is no
correction for the latter. Note that the important issue
here is not so much that p � be small or that R � � � be
near unity, but rather that these parameters can be
determined with precision. This is the question to be
addressed when comparing jet algorithms.

The DØ uranium-liquid argon sampling calorime-
ters [30] are shown in Fig. 29–30. They constitute the
primary system used to identify e, γ, jets and missing
transverse energy ( ~E/ � ). ~E/ � is defined as the negative
of the vector sum of the calorimeter cell transverse
energies (E � ’s). The Central (CC) and End (EC)
Calorimeters contain approximately seven and nine
interaction lengths of material respectively, ensuring
containment of nearly all particles except high p �

muons and neutrinos. The intercryostat region (IC),
between the CC and the EC calorimeters, is covered
by a scintillator based intercryostat detector (ICD) and
massless gaps (MG) [30]. The segmentation is ∆φ×∆η
= 0.1 × 0.1 (or smaller).

The fractional energy resolution, σ � /E, charac-
terizes the suitability of the DØ calorimeter system
for in-situ momentum calibration techniques. It is
parameterized with a

√
S2/E + C2 functional form.

For electrons, the sampling term, S, is 14.8 (15.7)%
in the CC (EC), and the constant term, C, is 0.3%
in both the CC and EC. For pions, the sampling
term is 47.0 (44.6)%, and the constant term is 4.5
(3.9)% in the CC (EC). The energy response is linear
to within 0.5% for electrons above 10 GeV and for
pions above 20 GeV. The DØ calorimeters are nearly
compensating, with an

�

� ratio less than 1.05 above 30
GeV. Due to the hermiticity and linearity of the DØ
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Figure 29. The DØ liquid argon calorimeter is
divided physically into three cryostats, defining
the central calorimeter and two end calorimeters.
Plates of absorber material are immersed in the
liquid argon contained by the cryostats. Each
cryostat is divided into an electromagnetic, fine
hadronic, and coarse hadronic section.

Figure 30. One quadrant of the DØ calorimeter and
drift chamber, projected in the x− z plane. Radial
lines illustrate the detector pseudorapidity and
the pseudoprojective geometry of the calorimeter
towers. Each tower is of size ∆η ×∆φ = 0.1× 0.1.

calorimeters their response function is well described
by a Gaussian distribution. These properties indicate
that the DØ calorimeter system is well suited for jet
and E/ � measurements and are the basis of the in-situ
calibration method described here.

4.4.1. Offset Correction
The total offset correction is measured in transverse

momentum and expressed as p �
�

� = O � � + O � � . The
first term is the contribution of the underlying event
(energy associated with the spectator partons in a high
p � event). The second term accounts for uranium
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noise, pile-up and energy from additional pp interac-
tions in the same crossing. Pile-up is the residual
energy from previous pp crossings as a result of the long
shaping times associated with the preamplification
stage in calorimeter readout cells.

To simulate the contribution of O � � to jets, DØ
Run I collider data taken in a random pp crossing
(no trigger requirements) was overlayed on high p � jet
herwig [31] Monte Carlo events. Jets were matched in
this sample to jets in the sample with no overlay. The
contribution of uranium noise, pile-up, and multiple
interactions was determined by taking the difference in
p � between matched pairs. O � � was extracted in the
same way from the overlap of low luminosity minimum
bias data (a crossing with an inelastic collision) on
Monte Carlo events. O � � and O � � for jets with p � =
30− 50 GeV are shown in Figs. 31 and 32. The offset
is derived in the central calorimeter and extrapolated
to higher η regions.

Figure 31. Physics underlying event offset O � � ver-
sus η. Above η = 0.9, the result is an extrapolation.

4.4.2. Response: The Missing E � Projection
Fraction Method

DØ makes a direct measurement of the jet mo-
mentum response using conservation of p � in Run I
photon-jet (γ-jet) collider events [27]. Previously, the
photon energy/momentum scale was determined from
the DØ Z → e+e−, J/ψ and π◦ data samples, using
the masses of these known resonances. In the case of
a γ-jet two body process, the jet momentum response

Figure 32. Offset due to uranium noise, pile-up
and multiple interactions, O � � versus η for different
luminosities in units of 1030 cm−2sec−1. Above η
= 0.9, the result is an extrapolation.

can be measured as:

R � � � = 1 +
~E/ � · n̂ � �

p � �
, (56)

where p � � and n̂ are the transverse momentum and
direction of the photon. To avoid resolution and trigger
biases, R � � � is binned in terms of E′ = p

� � � �� � ·cosh(η � � � )
and then mapped onto p

� � � �� � � . E′ depends only on
photon variables and jet pseudorapidity, which are
quantities measured with very good precision. R � � �

and E′ depend only on the jet position, which has little
dependence on the type of jet algorithm employed.
R � � � as a function of p

� � � �� � � (p � � ) is shown in Fig. 33.
The data is fit with the functional form R � � � (P ) =
a + b · ln(P ) + c · ln(P )2. R � � � for cone (R = 0.7) [27]
and K � (D = 1) jets are different by about 0.05. This
difference does not have any physical meaning; it arises
from different voltage-to-energy conversion factors at
the cell level before reconstruction.

4.4.3. Tests of the Method
The accuracy of the K � jet momentum scale correc-

tion was verified using a herwig γ-jet sample and a
fast version (showerlib) [32] of the Run I detector
simulation using geant [33]. A Monte Carlo jet
momentum scale was derived and the corrected jet
momentum compared directly to the momentum of
the associated particle jet. Figure 34 shows the ratio
of calorimeter and particle jet momentum before and
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Figure 33. R � � � versus K � jet momentum. The
solid lines are the fit and the dashed band the error
of the fit. (The three lowest points have nearly fully
correlated uncertainties and are excluded from the
fit.)

after the jet scale correction in the CC. The vertical
bars are statistical errors. Systematic errors (not
shown) are of the order of 0.01–0.02. After the jet
correction is applied, the ratio versus particle jet p � is
consistent with unity within the total uncertainty.

4.4.4. Summary
DØ improved the method introduced in Ref. [27]

for estimating the effects of underlying event, uranium
noise, pile-up, and additional pp interactions. The
offset correction is larger for K � jets with D = 1 than
for cone jets with R = 0.7 by approximately 20–30%.
The uncertainty (∼0.1 GeV for underlying event, and
∼0.2 GeV for the second offset term in the CC),
however, is slightly smaller. A K � (D = 1) algorithm
reconstructs more energy from uranium noise, pile-up,
underlying event, and multiple pp interactions than
a cone algorithm (R = 0.7). The accuracy of the
associated corrections are, however, on the same order.
The missing E � projection fraction method is well
suited to calibrate K � jets [34]. The uncertainty
in R � � � for K � and cone jets is about the same:
(0.5–1.6%) for jet p � = 50–450 GeV in the CC.

Overall, it may be possible to determine the jet
momentum scale more accurately for K � jets than the
energy scale for cone jets, given the absence of a cone
boundary in the former. The difference in precision
could be large in the low p � and high pseudorapidity
range, where the cone showering correction is larger
and more inaccurately determined. (The showering
correction uncertainty contributes 1–3% [34] to the
total error for R = 0.7 cone jets.)

Figure 34. Monte Carlo verification test. The
vertical bars are statistical errors. Systematic
errors (not shown) are of the order of 0.01–0.02.

The corrected p
� � � �� � � /p

� � � �� � � ratio is consistent with
unity within errors.

4.5. Jet Momentum Resolutions of K � Jets
One of the largest sources of uncertainty in jet

measurements (besides the jet momentum scale) is the
effect of a finite calorimeter jet momentum resolution.
A priori, due to the absence of cone boundaries, K �

jets should be affected little by jet-to-jet fluctuations
in the shower development. The jets will, of course,
still be subjected to the effects of hadronization.

We compared jet energy resolutions for cone jets
(R = 0.7) and momentum resolutions for K � jets
(D = 1) derived from a DØ Monte Carlo simulation
using the herwig event generator plus the geant
simulation of the DØ detector (Run I). The test was
performed for an inclusive jet sample with average p �

= 60 GeV and 80 GeV in |η| < 0.5. Within statistical
errors, σ � T /p

� for K � jets and σ � T /E
� for cone jets

are the same: 0.109 ± 0.009 and 0.105 ± 0.006 for
K � (D = 1) and cone (R = 0.7) jets at 60 GeV,
and 0.10 ± 0.01 for both at 80 GeV. Preliminary
measurements of K � jet momentum resolutions and
cone jet energy resolutions using Run I collider data
support the previous statement. Note, however, that
resolutions depend on the algorithm parameters R and
D. Resolution studies for different (smaller) R and D
parameters should be performed, as well as for different
type of samples, for example quark or gluon enriched
samples. These studies will make more clear how
energy/momentum resolutions compare for cone and
K � jets.
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4.6. Testing QCD with the K � Jet Algorithm
4.6.1. Jet Structure

The subjet multiplicity is a natural observable of
a K � jet [35,36]. Subjets are defined by re-running
the K � algorithm starting with a list of preclusters
in a jet. Pairs of objects with the smallest d � � are
merged successively until all remaining d � � are larger
than y � � � E2� (jet), where 0 < y � � � < 1 is a resolution
parameter. The resolved objects are called subjets,
and the number of subjets within the jet is the subjet
multiplicity M . For y � � � = 1, every jet consists of a
single subjet (M = 1). As y � � � decreases, the subjet
multiplicity increases until every precluster becomes
resolved as a separate subjet. At this level of detail the
specific preclustering algorithm used clearly influences
the result. A measurement of M for quark and gluon
jets is a test of QCD, and may eventually be used
in Run II as a discriminant variable to tag quark
jets in the final state. Fig. 35 shows a preliminary
measurement of M by DØ [37], using Run I data (K �

algorithm with D = 0.5 and y � � � = 0.001). The ratio

R =
〈 � g〉−1
〈 � q〉−1 is 1.91± 0.04(stat)± 0.23(sys). It is well

described by the herwig Monte Carlo, and illustrates
the fact that gluons radiate more than quarks.

Figure 35. Subjet multiplicity for quark and gluon
jets at DØ.

4.6.2. Jet Production
Jet cross section measurements have been exten-

sively used by both Fermilab Tevatron collabora-
tions during Run I to test perturbative (NLO) QCD
predictions, to test the available parton distribution
functions at the x and Q2 ranges covered by the Teva-
tron, and to search for quark compositeness [38–47].
The higher center-of-mass energy and the larger data

sample will allow the Tevatron experiments to extend
the energy reach and precision of jet cross sections in
Run II. The largest source of uncertainty in a jet cross
section measurement is the jet energy (or momentum)
scale. As an example, a 1% uncertainty in the jet
energy calibration translates into a 5–6% (10–15%)
uncertainty in the |η| < 0.5 inclusive jet cross section
at 100 GeV (450 GeV). As a function of η, the jet cross
section falls more quickly with transverse energy, and
the cross section error is even larger.

The K � jet algorithm may provide experimental
advantages for jet production measurements. At DØ,
the jet scale uncertainty for cone jets in the high
E � range is dominated by the contributions from the
response and out-of-cone showering corrections. In
Run II, the availability of more high E � photon data
and a more accurate determination of the position
of the interaction vertex promise a reduction in the
response uncertainty. Furthermore, the absence of
out-of-cone showering losses in K � jets will likely lead
to improved jet cross section measurements in the
forward η regions. Most of the Run I cross section
results by CDF and DØ use jet energy measurements
restricted to central regions (|η| < 1). A couple of
exceptions to the rule are the DØ measurements of the
pseudorapidity dependence of the jet cross section [45],
and the test of BFKL dynamics in dijet cross sections
at large pseudorapidity intervals [48].

4.6.3. Event Shapes
Event shape variables in e+e− and ep interactions

have attracted considerable interest over the last few
years [49–51]. Little attention has been paid to
measurements or calculations of event shape variables
at hadron colliders. An important example is thrust
which is defined as:

T = max
ˆ�

∑
� |~p � · n̂|∑
� |~p � |

, (57)

where the sum is over all parton, or particle momenta.
A LO jet rate calculation with two partons in the

final state yields T = 1. A NLO calculation, with three
partons in the final state would produce a deviation
from T = 1 (LO in thrust). A NNLO prediction
with four partons in the final state would then give a
NLO prediction of thrust. At all orders, thrust would
take values from 0.5 to unity. In other words, thrust
measures the pencil-likeness of the event: T → 1 for
back-to-back events, and T < 1 as more radiation
is present. The low scales introduced by soft and
collinear emission in events with T ∼< 1 could be the
reason for the observed discrepancy between LO and
NLO calculations and experimental e+e− data [49].
Resummation of higher-order perturbative terms could
lead to a better understanding of the problem.
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The simplest measurements of thrust we can perform
are the thrust distributions in jet events, changing the
definition of thrust to sum over all the jets in the event.
In order to be able to resum logarithms of the jet res-
olution scale, jets must be defined using an algorithm
such as the K � algorithm [52]. The contribution of
the underlying event, and multiple pp interactions in
hadron colliders, introduce an experimental difficulty
not present in lepton colliders. It is possible, however,
to minimize these systematics by choosing carefully the
variable to measure.

We can also define transverse thrust, T � , by replac-
ing particle momenta by transverse momenta in Eq. 57.
T � is Lorentz invariant for boosts along the beam axis,
an advantage in the case of hadron colliders.

Figs. 36–38 show the difference between T � cal-
culated from particle-level jets (reconstructed from
final-state hadrons) and T � from calorimeter-level jets
(reconstructed from cells). herwig was used as the
generator, and showerlib [32] (a fast version of
geant) simulated the Run I detector. In all cases
jets are reconstructed with the K � jet algorithm (D =
1). Fig. 36 shows a T � distribution for events with
H � = 90–150 GeV, where H � is the scalar sum p �

of all jets above 8 GeV. H � was chosen instead of Q2

as an estimator of the hard scattering energy scale of
the event. All jets with p � > 8 GeV contribute to
T � . The full circles are the particle-level or “true”
distribution. The triangles are the distribution as
seen in the calorimeter in an ideal environment with
no offset (underlying event, multiple pp interactions,
pile-up, or noise). The open circles are a calorimeter-
level distribution which includes a random collider
crossing event at a luminosity of 5 × 1030cm−1sec−1.
While the effect of calorimeter momentum response,
resolution, and showering is minimal, the offset distorts
the distribution to a large extent.

In Fig. 37, the thrust definition was modified to
allow only the three leading jets (above 8 GeV) to
contribute to the thrust (T �

3) and to H � (now H �
3).

The difference between the true and the fully-simulated
calorimeter distribution is now much smaller. Finally,
in Fig. 38, only the two leading jets contribute to the
thrust (T �

2) for events with H �
3 = 90–150 GeV. Now

the calorimeter distribution is even closer to the true
distribution. Although T �

3 and T �
2 are not calculated

from all final-state particles (to reduce contamination),
they implicitly include the information about the whole
radiation pattern through the p � and η−φ position of
the first few leading jets.

Event shape variables, like a modified version of
thrust, can be studied with precision at the Teva-
tron. The use of the K � algorithm, infrared safe
at all orders in perturbation theory, provides a test

Figure 36. All jets with p � > 8 GeV contribute to
T � . The full circles are the particle-level or “true”
distribution. The triangles are the distribution as
seen in the calorimeter in an ideal environment
with no offset (underlying event, multiple pp in-
teractions, pile-up, or noise). The open circles are
a calorimeter-level distribution which includes a
random crossing collider event at a luminosity of
5× 1030cm−2sec−1.

of the newly available hadronic three jet production
calculations at NLO [8,53]. In the QCD calculation
of the thrust variables defined in this section, there
are no large logarithms in the T → 1 limit. Then,
it is neither possible nor necessary to resum them.
However, if we redefine thrust in terms of subjets
or tracks, the measurement is more interesting and
resummation becomes an issue [54]. The availability
of the contributions of higher-order terms through a
resummation calculation would be desirable, in that
case, to improve the understanding of the range T ∼< 1.
In Run II, both the CDF and the DØ detectors will
have upgraded tracking systems. This will allow both
experiments to implement improved techniques for the
identification of hadrons using both the calorimeter
and the tracking detectors.

The H � dependence of 〈1− T 〉, in the range where
resummation and hadronization effects are small, could
also provide a measurement of α � .

5. Conclusions

Jet algorithms present a challenge to experimental-
ists and theorists alike. Although everyone “knows a
jet when they see it,” precise definitions are elusive and
detailed. The jet working group has attempted to pro-
vide guidelines and recommendations for jet algorithm
development. The end product of the year-long effort
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Figure 37. Same as Fig. 36 but only the three
leading jets contribute to T � , now T �

3. H �
3 is

the scalar sum p � of the three leading jets in the
event.

Figure 38. Same as Fig. 36 but only the two leading
jets contribute to T � , now T �

2. H �
3 is the scalar

sum p � of the three leading jets in the event.

has been standardized jet cone and K � algorithms,
and the recommendation to use 4-vector, E-scheme
kinematic variables. A legacy algorithm or ILCA has
been suggested which will bridge the gap between past
results and improved theoretical calculations. This
document has addressed concerns about the use and
calibration of K � jets.

We strongly recommend that both CDF and DØ
adopt standard algorithms for Run II. Since contin-
ued development is probably inevitable, we encourage
continued dialogue. The usefulness of standardized
algorithms, which can replicate past results and meet

experimental and theoretical requirements, makes con-
tinued coordination well worth the effort.
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Overview

Precision measurements of electroweak quantities
are carried out to test the Standard Model (SM).
In particular, measurements of the top quark mass,
m � � � , when combined with precise measurements of
the W mass, M � , and the weak mixing angle, sin2 θ̄ � ,
make it possible to derive indirect constraints on the
Higgs boson mass, M � , via top quark and Higgs boson
electroweak radiative corrections to M � . Comparison
of these constraints on M � with the mass obtained
from direct observation of the Higgs boson in future
collider experiments will be an important test of the
SM.

In this report, the prospects for measuring the W
parameters (mass and width) and the weak mixing
angle in Run II are discussed, and a program for
extracting the probability distribution function of M �

is described. This is done in the form of three largely
separate contributions.

The first contribution describes in detail the strate-
gies of measuring M � and the W width, Γ � , at
hadron colliders, and discusses the statistical, the-
oretical and detector specific uncertainties expected
in Run II. The understanding of electroweak radia-

tive corrections is crucial for precision W mass mea-
surements. Recently, improved calculations of the
electroweak radiative corrections to W and Z boson
production in hadronic collisions became available.
These calculations are summarized and preliminary
results from converting the theoretical weighted Monte
Carlo program into an event generator are described.
The traditional method of extracting M � from the
line-shape of the transverse mass distribution has been
the optimal technique for the extraction of M � in the
low luminosity environment of Run I. Other techniques
may cancel some of the systematic and statistical
uncertainties resulting in more precise measurements
for the high luminosities expected in Run II. Measuring
the W mass from fits of the transverse momentum
distributions of the W decay products and the ratio
of the transverse masses of the W and Z bosons are
investigated in some detail. Finally, the precision
expected for the W mass in Run II is compared with
that from current LEP II data, and the accuracy one
might hope to achieve at the LHC and a future linear
e+e− collider.

In the second contribution, a study of the measure-
ment of the forward-backward asymmetry, A � � , in
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e+e− and µ+µ− events is presented. The forward-
backward asymmetry of `+`− events in Run II can
yield a measurement of the effective weak mixing
angle sin2 θ̄W and can provide a test of the standard
model γ∗/Z interference at `+`− invariant masses well
above the 200 GeV center of mass energy of the LEP
collider. The asymmetry at large partonic center of
mass energies can also be used to study the properties
of possible new neutral gauge bosons, and to search for
compositeness and large extra dimensions. Estimates
of the statistical and systematic uncertainties expected
in Run II for A � � and sin2 θ̄W are given. The
uncertainty for sin2 θ̄W is compared with the precision
expected from LHC experiments, and from a linear
collider operating at the Z pole.

The third contribution summarizes the features of
the FORTRAN package GAPP which performs a
fit to the electroweak observables and extracts the
probability distribution function of M � .
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We discuss the prospects for measuring the W mass and width in Run II. The basic techniques used to measure MW are
described and the statistical, theoretical and detector-related uncertainties are discussed in detail. Alternative methods of
measuring the W mass at the Tevatron and the prospects for MW measurements at other colliders are also described.

1. Introduction

Measuring the W mass, M � , and width, Γ � are
important objectives for the Tevatron experiments in
Run II. The goal for the W mass measurement at the
Tevatron in Run II is determined by three factors:
the direct measurement of the LEP II experiments,
the indirect determination from within the Standard
Model (SM), and the ultimate precision on the mea-
sured top quark mass. The expectations for LEP II
appear to be an overall uncertainty of approximately
±35 MeV/c2 [1]. The indirect determination is at the
±30 MeV/c2 level and is not likely to significantly
improve given the end of the LEP and SLC programs.
Finally, the top quark mass precision may reach the
±2 GeV/c2 level, which corresponds to a parametric
uncertainty of δM � = 12 MeV/c2 [2]. The constraint
provided by a successful ± 30 MeV/c2 W boson mass
measurement per experiment per channel1 would have
an impact on electroweak global fitting comparable
to that of the LEP Z asymmetries. If the ultimate
precision on the M � determination could reach ∼
±30 MeV/c2, then the bound on the Higgs boson mass
would reach approximately ±30 GeV/c2 [3]. With
the best fit central value close to the current LEP II
direct search lower limit of M � > 113.2 GeV/c2 [4],

1While the measurements from the different channels and
different experiments provide cross checks, the combined mea-
surement is not expected to yield a much better precision than
a single measurement because of large common uncertainties.

considerable pressure can be brought to bear on the
SM.

This document is structured as follows. The basic
techniques used to measure the W mass and width
are briefly reviewed in section 2. The statistical
and detector-related uncertainties affecting the W
mass and width measurements are discussed in more
detail in section 3 and section 4, respectively. A
number of systematic uncertainties clearly do not scale
statistically and these are addressed separately in
section 5. The expected errors on the measured W
mass in Run II using the conventional transverse mass
method and the W width are summarized in section 6.
Alternative methods of measuring the W mass at the
Tevatron are described in section 7 and prospects for
M � measurements at other colliders are discussed in
section 8. Finally, some theoretical considerations im-
portant for future W mass measurements are brought
up in section 9. Section 10 concludes this document.

2. M � and Γ � Measurements from the M �

Lineshape

The determination of M � depends on the two body
nature of the W decay: W → `ν � . The kinematical
Jacobian peak and sharp edge at the value of M � /2 is
easily observed in the measurement of the transverse
momentum of either of the leptons. In practice, the
situation is difficult due to both challenging exper-
imental issues and the fact that phenomenological
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Table 1
Advantages and disadvantages to an M � determina-
tion via transverse mass or lepton transverse momenta.

Measurable p
�

� sensitivity resolution sensitivity
M � small significant
p
�� significant small
p

�� significant significant

assumptions must be made in order to perform the
analysis. Because the standard measurable cannot
be written in closed form, an unbinned maximum
likelihood calculation is required. Figure 1 shows a
calculation of p

�� (unsmeared) with p
�

� = 0; the effect
of finite p

�
� ; and the inclusion of detector smearing

effects. It is apparent that p
�� is very sensitive to the

transverse motion of the W boson.
Historically, precise understanding of p

�
� has been

lacking, although it is currently modeled by measur-
able parameters through the resummation formalism
of Collins, Soper, and Sterman [5]. For this reason,
the transverse mass quantity was suggested [6] and has
been the traditional measurable. It is defined by

M � =
√

2p � � p
�� (1− cos(φ � � � )), (1)

where φ � � � is the angle between the charged lepton
and the neutrino in the transverse plane. The observ-
ables are the lepton transverse energy or momentum
~p �� and the non-lepton transverse energy ~u (recoil
transverse energy against the W ), from which the
neutrino momentum ~p

�� and the transverse mass M �

are derived. Figure 2 shows that the sensitivity of
M � to p

�
� is nearly negligible. While considerably

more stable to the phenomenology of the production
model, the requirement that the neutrino direction be
accurately measured leads to a set of experimental
requirements which are difficult in practice to control.
So, there are different benefits and challenges among
the direct measurements of the transverse quantities,
p

� � , p
�� , and M � . Table 1 lists these relative pros and

cons of the transverse mass and transverse momentum
measurements.

Both CDF and DØ have determined the W boson
mass using the transverse mass approach. The indi-
vidual measurements of both experiments are shown
in Table 2 and the overall combined result is

M � = 80.452± 0.062 GeV/c
2
. (2)

The W boson width is precisely predicted in terms

30 35 40 45 50

pT(e) (GeV)

dN
/d

p T
(e

)

Figure 1. The effects of resolution and the finite p
�

�
on p

�� in W boson decay. The histogram shows p
�

�
without detector smearing and for p

�
� = 0. The dots

include the effects of adding finite p
�

� , while the shaded
histogram includes the effects of detector resolutions.
The effects are calculated for the DØ Run I detector
resolutions.

55 60 65 70 75 80 85 90 95

mT (GeV)

dN
/d

m
T

Figure 2. The effects of resolution and the finite
p

�
� on M � in W → eν. The histogram shows M �

without detector smearing and for p
�

� = 0. The dots
include the effects of adding finite p

�
� , while the shaded

histogram includes the effects of detector resolutions.
The effects are calculated for the DØ Run I detector
resolutions.

of well-measured SM masses and coupling strengths:

Γ � =
G � M3�

6
√

2π

[
3 + 6

(
1 +

α � (M � )

π
+O(α2

� )

)]

×(1 +O(1%))

= 2.093± 0.002 GeV (3)

where the uncertainty is dominated by the experimen-
tal M � precision [7,8]. The mass and width of the W
boson connect both theoretically and experimentally,
as Γ � has been extracted from a lineshape analysis
using techniques developed for the W mass measure-
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Table 2
Tevatron results for M � . N � is the number of W boson events observed. Scale and non-scale systematic errors
are listed separately.

Experiment
∫
Ldt N � M � ± stat ± sys ± scale

pb−1 GeV/c2 GeV/c2 GeV/c2 GeV/c2

CDF Run 0 e 4.4 1130 79.91 0.35 0.24 0.19
CDF Run 0 µ 4.4 592 79.90 0.53 0.32 0.08
CDF Run Ia e 18.2 5718 80.490 0.145 0.130 0.120
DØ Run Ia e 12.8 5982 80.350 0.140 0.165 0.160

CDF Run Ia µ 19.7 3268 80.310 0.205 0.120 0.050
CDF Run Ib e 84 30,100 80.473 0.065 0.054 0.075
DØ Run Ib e 82 28,323 80.440 0.070 0.070 0.065

DØ Run Ib e, forward 82 11,089 80.757 0.107 0.091 0.181
CDF Run Ib µ 80 14,700 80.465 0.100 0.057 0.085

ment. Combining CDF electron and muon data from
1994–95 yields a result with 140 MeV precision [9]:

Γ � = 2.04± 0.11 (stat)± 0.09 (syst) GeV.
(4)

In this measurement, u < 20 GeV is required to
improve the M � resolution and to reduce backgrounds.

Figure 3 shows the dependence of the M � spectrum
on Γ � . In the region M � > 100 GeV/c2, the
lineshape is sensitive to Γ � but relatively insensitive
to uncertainties in the p

�� resolution. Thus, Γ � is
extracted from a fit to the region 100 GeV/c2 < M � <
200 GeV/c2, after signal and background templates

are normalized to the data in the region 40 GeV/c
2
<

M � < 200 GeV/c2. Figure 4 shows the fits to the
CDF electron and muon data. The upper limit M � <
200 GeV/c2 is somewhat arbitrary.

The measurement of Γ � depends on a precise
determination of the transverse mass lineshape. Thus,
the same error sources contribute to both the W mass
and width measurement. In the following we discuss
these sources, concentrating on how they impact the
W mass measurement. Run II projections for the
individual uncertainties contributing to the W width
measurement are presented in section 6.

3. Statistical Uncertainties in the M � Determi-
nation

In order to reach the target precision for M � , con-
siderable luminosity will be required. Presuming that
Run II is to deliver an integrated luminosity of 2 fb−1,
the statistical precision on M � can be estimated from
the existing data (see Table 2). Figure 5 shows the
W statistical uncertainties in these measurements as
a function of 1/

√
N � , demonstrating a predictable

extrapolation to N � ' 700, 000 which corresponds
to a Run II dataset per experiment per channel.

MT(e,ν) (GeV)

Transverse mass lineshape
(normalized to unit area)
for ΓW=1.5,1.7,...,2.5 GeV

CDF Preliminary

10
-5

10
-4

10
-3

10
-2

10
-1

40 60 80 100 120 140 160 180 200

Figure 3. Dependence of the M � spectrum on Γ � .
Each spectrum is normalized to unit area.

The statistical uncertainty from this extrapolation is
approximately 13 MeV/c2. For a goal of ±30 MeV/c2

overall uncertainty, this leaves 27 MeV/c2 available in
the error budget which must be accounted for by all
systematic uncertainties.

4. Detector-specific Uncertainties in the M �

Determination

After the lepton energy and momentum scales, the
modeling of the W recoil provided the largest system-
atic uncertainty in the CDF Run Ib W mass measure-
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Figure 4. CDF 1994-95 e and µ data, on a semiloga-
rithmic scale, with best fits for Γ � . The background
estimates are also shown. The insets show the Jacobian
peak regions on a linear scale.

ment. Since Z statistics dominates this number, it
can be expected to be reduced significantly in Run II.
Non-Z related recoil systematics were estimated to
enter at the 10 MeV/c2 level, which is probably
indicative of the limiting size of this error. The increase
in the average number of overlapping minimum bias
events in Run II may seriously impact the recoil model
systematics, although various detector improvements
may partly compensate for this.

Much of the understanding of experimental system-
atics comes from a detailed study of the Z bosons and
hence as luminosity improves, systematic uncertainties
should diminish in kind. Certainly, the scale and
resolution of the recoil energy against theW come from
measurements of the Z system. Likewise, background
determination, underlying event studies, and selection
biases depend critically, but not exclusively, on Z
boson data. Most importantly, the lepton energy
and momentum scales depend solely on the Z boson
datasets.

Figure 6 shows the CDF and DØ systematic uncer-
tainties for both electrons and muons as a function
of 1/

√
N � and in particular the calorimeter scale

uncertainties for electrons. This latter important
energy scale determination is currently tied to the

0
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δW (GeV/c2)= 800 + 330 L (pb -1)

Figure 5. Statistical uncertainties in Run I M �

measurements. Each circle represents either a CDF
or DØ measurement. The result of a straight line
fit is shown. The shaded box is the approximate
extrapolation to a 2 fb−1 Run II result.

determination of fiducial di-lepton decay resonances,
notably the Z boson, but also the J/ψ, Υ and the
E/p dependence on the energy E, using electrons
from W and Z decays. As the statistical precision
improves, the dominant feature of the scale deter-
mination becomes its value in the region of M � ,
so offsets and any low energy nonlinearities become
relatively less important and hence reliance on the low
mass resonances is reduced. On the other hand, for
the muon momentum scale determination, where the
observable is the curvature, low mass resonances are
also important. Figure 6 suggests that this uncer-
tainty is truly statistical in nature and extrapolates
to approximately the 15 MeV/c2 level. The ability to
bound non-linearities using collider data may become a
limiting source of error in Run II. Hence, the remaining
systematic uncertainties must be controlled to a level of
approximately 22 MeV/c2 in order to reach the overall
goal of ±30 MeV/c2.

Figure 6 also shows the non-scale systematic uncer-
tainties from both the CDF and DØ electron mea-
surements of M � and the CDF muon measurement.
Here the extrapolation is not as straightforward, but
there is clearly a distinct statistical nature to these
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Figure 6. Systematic uncertainties for each Run I
M � measurement. The open squares are the four
electron measurements from CDF and DØ, the circles
are the scale uncertainties from two DØ electron
measurements and the Run Ib CDF measurement,
and the diamonds are the systematic uncertainties
(excluding scale) for the CDF muon measurements.
The large box is the position of the extrapolated
statistical uncertainties to the Run II luminosity. The
lines are linear fits to each set of points.

errors. That they appear to extrapolate to negative
values suggests that the systematic uncertainties may
contain a statistically independent component for both
the muon and the electron analyses.

For both M � and Γ � analyses, the Z → `` data
constrain both the lepton scales and resolutions and
an empirical model of the hadronic recoil measurement.
QED corrections are an issue in measuring the Z mass,
and the discussion of these corrections should be in
terms of the W/Z mass ratio. In a high-precision
width measurement, more effort will also be needed
to place bounds on possible tails in the lepton and
recoil resolution functions. Uncertainty in the recoil
measurement is predominantly statistical in how well
model parameters are determined. Several cross checks
which improve with statistics independently ensure the
efficacy of the model.

Selection biases can be studied with various control
samples, notably the second lepton originating from
Z decays. The QCD background can be also studied

by varying cuts and studying control samples. The
background from W → τν is well understood, and the
background from Z → `` will be reduced for Run II
since the tracking and muon coverages are improved
for both experiments.

5. Theoretical Uncertainties in the M � Deter-
mination

The M � lineshape simulation requires a theoretical

model, as a function of Γ � and M � , of
� 3 �

� �̂ � � � �
T

,
including correlations between p � and ŝ. For pro-
ducing high-statistics fitting templates, a weighted
Monte Carlo generator is useful, so that M � , Γ � , and
the p � spectrum can be varied simply by reweighting
events. Because the measurement of the recoil energy
against the W , ~u, is modeled empirically, the generator
does not have to describe the recoil energy at the
particle level. A detailed description of final-state
QED radiation is important, because bremsstrahlung
affects the isolation variables needed to select a clean
W sample.

The W and Z p � spectra are not calculable using
perturbation theory at low p � . In this region, the
perturbative calculation must be augmented by a
non-perturbative contribution which depends on three
parameters (see section 5.2.1) which are tuned to fit
the Z → `` data. Theoretical guidance is useful for
choosing an appropriate set of parameters to vary. A
strategy such as has been used in the CDF Run Ib
analysis to use theory to extrapolate from the Z p �

distribution to the W p � distribution seems to limit
the effect of theoretical assumptions to ±5 MeV/c2.

The parameters of parton distribution functions are
also empirical, and seldom have quoted uncertainties.
PDF uncertainties seem under control for Run I data
but will need improvement to avoid becoming dom-
inant in Run II. More work is needed to determine
how both to minimize the impact of PDF uncertainties
(e.g. by extending the lepton rapidity coverage of the
measurements as done in the DØ analysis [10]) and to
evaluate the effects of PDF uncertainties in precision
measurements.

To date, ad hoc event generators have been used in
the W mass and width measurements. In Run II, these
measurements will reach a precision of tens of MeV/c2,
requiring much more attention to detail in Monte Carlo
calculations. Precision electroweak measurements in
Run II should strive to use (possibly to develop) pub-
lished, well documented Monte Carlo programs that
are common to both collider experiments. In particu-
lar, the M � and Γ � measurements would benefit from
a unified generator that incorporates state-of-the-art
QED and electroweak calculations, uses a boson p �
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model tunable to Run II data, and correctly handles
W bosons that are produced far off-shell.

The W width uncertainty in the M � measurement
could become significant but assuming the SM M � -
Γ � relation, it won’t be a dominant uncertainty.

5.1. Parton Distribution Functions
The transverse mass distribution is invariant under

the longitudinal boost of the W boson. However, the
incomplete η coverage of the detectors introduces a
dependence of the measured M � distribution on the
longitudinal momentum distribution of the produced
W ’s, determined by the PDF’s. Therefore, quantifying
the uncertainties in PDFs and the resulting uncertain-
ties in the W mass measurement is crucial.

5.1.1. Constraining PDFs from the Tevatron
data

The measurement of the W charge asymmetry at
the Tevatron, which is sensitive to the ratio of d to
u quark densities in the proton, is of direct benefit in
constraining PDF effects in the W mass measurement.
This has been demonstrated by the CDF experiment.
Following Ref. [11], they made parametric modifica-
tions to the MRS family of PDFs. These modifications
with retuned parameters are listed in Table 3 and
their predictions are compared to the W lepton charge
asymmetry measurement and the NMC d/u data [12]
in Fig. 7. From the variation among the six reference
PDFs, an uncertainty of 15 MeV/c2 was taken which
is common to the electron and muon analyses.

Since the Run Ib charge asymmetry data is domi-
nated by statistical uncertainties, we expect a smaller
uncertainty for the Run II measurement. Measure-
ments of Drell-Yan production at the Tevatron can be
used to get further constraints on PDFs.

Table 3
Reference PDFs and modifications

PDF set Modification
MRS-T d/u→ d/u× (1.07− 0.07e−8 � )
MRS-R2 d/u→ d/u+ 0.11x× (1 + x)

MRS-R1 d/u→ d/u× (1.00− 0.04e−
1
2 (

(x−0.07)
0.015 )2

)

5.1.2. Reducing the PDF uncertainty with a
larger η coverage

Since the PDF uncertainty comes from the finite η
coverage of the detectors, it is expected to decrease
with the more complete rapidity coverage of the Run II
detectors. The advantage of a larger rapidity coverage
has been demonstrated by the DØ experiment: the

Figure 7. (a) The CDF measurement of the W lepton
charge asymmetry. (b) The NMC d/u data evolved
to Q2 = M2� . The gray bands represent the range
spanned by the six reference PDFs considered.

uncertainty on the W mass measurement using their
central calorimeter was 11 MeV/c2, while that using
both the central and end calorimeter was 7 MeV/c2.
With the upgraded calorimeters and trackers for the
range |η| > 1, the CDF experiment can measure the
W mass over a larger rapidity range in Run II.

5.1.3. A Global Approach
There has been a systematic effort to map out

the uncertainties allowed by available experimental
constraints, both on the PDFs themselves and on
physical observables derived from them. This approach
will provide a more reliable estimate and may be the
best course of action for precision measurements such
as the W mass or the W production cross section. This
has been emphasized at this workshop by the Parton
Distributions Working Group [13].

5.2. W Boson Transverse Momentum
The neutrino transverse momentum is estimated by

combining the measured lepton transverse momentum
and the W recoil: ~p

�� = −(~p
�

� + ~u). It is clear
therefore that an understanding of both the underlying
W boson transverse momentum distribution and the
corresponding detector response, usually called the
recoil model, is crucial for a precisionW mass measure-
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ment. For the CDF Run Ib W mass measurement, the
systematic uncertainties from these two sources were
estimated to be 15− 20 MeV/c2 and 35− 40 MeV/c2,
respectively, in each channel [14].

5.2.1. Extracting the p
�

� Distribution
The strategy employed in Run I, which is expected

to be used also in Run II, is to extract the underlying
p

�
� distribution from the measured p

�

� distribution (Y
is the weak boson rapidity):

d2σ

dp
�

� dY
=

d2σ

dp
�

� dY
× d2σ/dp

�
� dY

d2σ/dp
�

� dY
, (5)

where the ratio of the W and Z differential distri-
butions is obtained from theory. This method relies
on the fact that the observed p

�

� distribution suffers
relatively little from detector smearing effects, allowing
fits to be performed for the true distribution. The
CDF Run Ib data and the results of a Monte Carlo
simulation using the best fit parameters are compared
in Fig. 8.
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Figure 8. The observed p
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� distributions in the
electron and muon channels using the CDF Run Ib
data. Also shown are the curves for the Monte Carlo
simulation using the best fit parameters for the input
p

�

� distribution.

The experimental uncertainties, as in many as-

pects of the W mass measurement, are dominated
by the available Z → `+`− statistics and should
scale correspondingly with the delivered luminosity in
Run II. Theoretical uncertainties in the ratio of W
to Z transverse momentum distributions contribute
a further O(5) MeV/c2 to the overall error. The
two sources of uncertainty are compared for the CDF
Run Ib W → µν analysis in Fig. 9.
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Figure 9. (a) A comparison of the two sources of
uncertainty on the derived p

�
� distribution. (b) The

p
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� distribution extracted for the CDF Run Ib W →
µν mass measurement.

The ratio of W to Z transverse momentum distri-
butions used in Eq. (5) is taken from resummation
calculations, which attempt to resum terms corre-
sponding to multiple soft and collinear gluon emission
to all orders. They thereby include the dominant
contribution to the cross section at small boson p �

that is missing in fixed order calculations. These
perturbative calculations need to be augmented by a
non-perturbative contribution which, in the case of
impact-parameter (b) space resummations, is typically
parameterized as a Sudakov form-factor with the fol-
lowing form:

F
���

= exp [−g1b
2 − g2b

2 ln(Q/2Q0)

−g1g3b ln(100x1x2) ] , (6)
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where Q0 is a low scale of O(few) GeV and the
parameters g1, g2 and g3 must be obtained from fits
to the data [15]. DØ has shown that the Run I p

�

�

data is as sensitive to g1 and g2 as the low-energy
Drell-Yan data that has largely been used to constrain
these parameters in the past [16]. The Run II data
will therefore provide significant new constraints on
the form of the non-perturbative contribution to the
p

�
� distribution.
Moreover, recent theoretical developments in com-

bining the advantages of b−space and p � −space resum-
mation formalisms may provide a better theoretical
framework for extracting the underlying p

�
� distribu-

tion in Run II [17].
In short, the precision Z data available in Run II

together with further theoretical advances will reduce
in a number of ways the systematic uncertainties due
to the knowledge of the p

�
� distribution, perhaps down

to the level of ∼ 5 MeV/c2.

5.3. QCD Higher Order Effects
The W bosons are treated as spin-one particles and

decay via the weak interaction into a charged lepton (e,
µ or τ) and a neutrino. The charged leptons are pro-
duced from the W decay with an angular distribution
determined by the O(α2

� ) calculation of [18] which, for
W+ bosons with a helicity of –1 with respect to the
proton direction, has the form :

dσ

d cos θCS
∝ 1 + a1(p � ) cos θCS + a2(p � ) cos2 θCS (7)

where p � is the transverse momentum of the W and
θCS is the polar direction of the charged lepton with
respect to the proton direction in the Collins-Soper
frame [19]. a1 and a2 are p � dependent parameters.
For p � = 0, a1 = 2 and a2 = 1, providing the
angular distribution of a W boson fully polarized along
the proton direction. For the p

�
� values relevant to

the W mass analysis (p
�

� < 30 GeV/c), the change
in W polarization as p

�
� increases only causes a

modest change in the angular distribution of the decay
leptons [18].

While the uncertainty associated with the change in
the angular distribution of the W decay lepton due
to higher order QCD corrections (a few MeV/c2) has
been negligible for the Run I measurements, it can
not be ignored for the Run II measurements (see the
Photon and Weak Boson Physics working group report
for more details).

5.4. QED Radiative Effects
5.4.1. Introduction

The understanding of QED radiative corrections is
crucial for precision W mass measurements at the
Tevatron. The dominant process is final state radiation

(FSR) from the charged lepton, the effect of which
strongly depends on the lepton identification criteria
and the energy or momentum measurement methods
employed. Calorimetric energy measurements, such
as those employed in the electron channel, are more
inclusive than track based momentum measurements
used in the muon channel and the effect of FSR
is consequently reduced. In the CDF Run Ib W
mass measurement the mass shifts due to radiative
effects were estimated to be −65 ± 20 MeV/c2 and
−168±10 MeV/c2 for the electron and muon channels,
respectively [14]. These effects will be larger in
Run II due to increase in tracker material in CDF and
magnetic tracking in DØ.

The Monte Carlo program used for the Run I W
mass measurement incorporated a calculation of QED
corrections by Berends and Kleiss [20]. This treatment,
however, does not include initial state radiation (ISR)
and has a maximum of one final state photon. The
effect of multiple photon emission was estimated by
comparing the calculation of Berends and Kleiss to
PHOTOS [21], a universal Monte Carlo program for QED
radiative corrections that can generate a maximum of
two final state photons. Likewise, the effect of ISR and
other missing diagrams was estimated by comparing
the calculation of Berends and Kleiss to a full O(α)
calculation by Baur et al. [22]. The resulting system-
atic uncertainties on the W mass are estimated to be
20 MeV/c2 and 10 MeV/c2 in the electron and muon
channels, respectively [14]. Clearly these systematic
uncertainties become much more significant in the
context of statistical uncertainties of O(10) MeV/c2

expected for 2 fb−1 in Run II.
The next section describes in more detail the calcu-

lation by Baur et al., which forms the basis for a new
event generator. Some studies of the effects of QED
radiation on the W mass measurement are presented
in section 5.4.4. Section 5.4.5 briefly outlines some
work in progress that should further reduce systematic
uncertainties due to radiative corrections in Run II.

5.4.2. WGRAD

WGRAD is a program for calculating O(α) electroweak
radiative corrections to the process qq̄′ →W± → `±ν,
including the real photon contribution qq̄′ → `±νγ.
Both ISR from the incoming quarks, FSR from the
final state charged lepton, and interference terms are
included. Many more details can be found in [22].

The most important generator level cuts are on
the final state photon energy and collinearity for
radiative events. The photon energy cut, controlled
by the parameter δ � , is made on the fraction of
the parton’s energy carried by the emitted photon
in the parton-parton center of mass system: E∗� >
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Table 4
The fraction of qq̄′ → µν(γ) events containing a final
state photon for different final state photon soft and
collinear cuts. Events are generated with ISR only,
FSR only, and with a full treatment of QED radiation.

Photon Cuts ISR FSR Full

Photon Cuts ISR FSR Full

δ � = 0.01, δ � = 0.01 1.6% 9.4% 11.1%

δ � = 0.01, δ � = 0.001 2.5% 9.4% 12.0%

δ � = 0.001, δ � = 0.001 4.1% 15.5% 20.0%

δ � = 0.001, δ � = 0.0001 5.2% 15.5% 21.3%

δ �
√
ŝ/2. The photon collinearity cut, controlled by

the parameter δ � , is made on the angle between the
charged fermion and the emitted photon in the same
frame: cos θ∗ < 1 − δ � . However, final state collinear
singularities are regulated by the finite lepton masses
and the above cut is only implemented for quarkonic
radiation when ISR is included. The fraction of
radiative events corresponding to different photon cuts
is given in Table 4 for the process qq̄′ → µν(γ) at√
s = 2 TeV. Loose fiducial cuts p

�
� > 10 GeV/c,

|η � | < 2 and p
�� > 10 GeV/c have been applied. The

inclusion of ISR increases the photon yield by around
30%, depending on the soft and collinear photon cuts
applied. The fractions are significantly higher for the
process qq̄′ → eν(γ) in the cases that FSR is included.
The effect on the fitted W mass of the inclusion of ISR
is examined in section 5.4.4.

5.4.3. Event Generation
WGRAD has been turned into an event generator

through a suitable unweighting scheme described ex-
tensively in [23]. A significant complication is the
presence of negative qq̄′ → `±ν event weights in
the program which, while expected to cancel with
positive qq̄′ → `±νγ event weights in the calculation
of physical observables, nevertheless appear separately
in the unweighting procedure. The approach here
has been to unweight the negative weight events in a
similar manner to the positive weight events, such that
the output consists of both positive and negative unit
weight events. The fraction of negative weight events,
plotted in Fig. 10 for the process qq̄′ → µν(γ), depends
strongly on the soft and collinear photon cuts applied.
It is not significantly different for qq̄′ → eν(γ) events.
The effect of negative weights on the fitted W mass is
examined in the next section.
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Figure 10. The negative weight fraction versus p
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� for

different soft and collinear photon cuts.

5.4.4. The Effect of QED Radiation on the
Measured W Mass

WGRAD has been used to generate large W → µν
event samples for the purposes of investigating the
effect of QED radiation on the measurement of the
W mass. The events have been generated at

√
s =

1.8 TeV in order to make use of the CDF Run I
W production model and detector smearing param-
eterizations. The W production model, extracted
from the Run I Drell-Yan data, is used to smear
the true W transverse momentum. The CDF recoil
model is then used to translate this into a measured
p � (W ), which is combined with the smeared lepton
and photon momenta to form a realistic transverse
mass distribution. Loose fiducial cuts p

�
� > 20 GeV/c,

|η � | < 2 and missing-E � > 20 GeV are applied. To
simulate the CDF muon identification criteria, events
are rejected if a photon with E � > 2.0 GeV is found
within an η − φ cone of radius 0.25 around the muon.
Low energy photons inside the cone are not included
in the measurement of the muon p � , as is the case
experimentally.

The unweighted event samples, all generated with
M � = 80.4 GeV/c2 and Γ � = 2.1 GeV, are divided
into “data” and “Monte Carlo” sub-samples and fitted
against one another in pseudo-experiments. The fit is
to the transverse mass distribution in the range 50 <
M � < 100 GeV/c2. For a number of events in the
transverse mass fit region equal to that in the CDF
Run Ib W → µν analysis, the resulting statistical error
is very similar.

As a cross check of this procedure, “data” and
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Table 5
The results of pseudo-experiments generated by WGRAD with different treatments of QED radiative effects. Further
details are given in the text.

“Data” “Monte Carlo” Fit Result

(a) FULL; δ � = 0.01, δ � = 0.01 FULL; δ � = 0.01, δ � = 0.01 80.4030± 0.0069 GeV/c2

(b) FULL; δ � = 0.01, δ � = 0.01 FULL no neg.; δ � = 0.01, δ � = 0.01 80.4027± 0.0069 GeV/c2

(c) FSR only; δ � = 0.01, δ � = 0.01 FULL; δ � = 0.01, δ � = 0.01 80.392± 0.006 GeV/c2

(d) FSR only; δ � = 0.001, δ � = 0.001 FULL; δ � = 0.01, δ � = 0.01 80.381± 0.006 GeV/c2

(e) FULL; δ � = 0.001, δ � = 0.001 FULL; δ � = 0.01, δ � = 0.01 80.389± 0.009 GeV/c2

(f) FULL no neg.; δ � = 0.001, δ � = 0.001 FULL; δ � = 0.01, δ � = 0.001 80.399± 0.009 GeV/c2

“Monte Carlo” samples generated with identical cuts
are fitted against one another, with the result shown
in Table 5(a). It is interesting to note that if the
negative weight events, which occur at the 0.2% level in
the “Monte Carlo” sample, are removed, the fit result
changes by less than 0.5 MeV/c2 (Table 5(b)).

Table 5(c) shows the result of fitting “data” gener-
ated with FSR only. The shift in the fitted W mass
of ≈ 8 MeV/c2 is consistent with the estimate given
in [14] of the effect of ISR on the fitted W mass,
although the uncertainties here are rather large. If
the soft and collinear cuts are reduced in the “data”
sample, as shown in Table 5(d), the fitted W mass
shifts significantly downwards. This is to be expected
since the track based muon p � measurement does
not incorporate collinear photons. The setting of
soft and collinear photon cuts is therefore particularly
important in the generation of W → µν Monte Carlo
samples.

The fits shown in Table 5(e) and (f) are performed
in order to examine the effect of negative weights on
the fit when, as in the case of this “data” sample,
negative weights are present at the 5% level. When
the negative weight events are excluded from the fit,
the result changes by 10 MeV/c2. The larger shift
in the fitted W mass with respect to Table 5(b) is
commensurate with the larger negative weight fraction
in this sample.

5.4.5. Work in Progress
A remaining source of systematic uncertainty due

to QED radiation is the effect of multiple photon
emission. As discussed above, this has previously been
estimated by comparing the Berends and Kleiss single
photon calculation with the results of running the
PHOTOS algorithm. Recently, however, complete matrix
element calculations of the processes qq̄′ → `±νγγ and

qq̄ → `+`−γγ have been performed [24]. It may be
possible in the future to do detailed comparisons of the
results of these calculations and the PHOTOS algorithm,
in order to arrive at a better constrained systematic
uncertainty due to multiple photon emission.

Furthermore, a complete set of O(α) electroweak
radiative corrections to the process qq̄ → `+`−,
including the real photon contribution qq̄ → `+`−γ,
will soon be available. This will enable a consistent
Monte Carlo description of the W data and the Z data,
upon which the W mass analysis crucially depends for
the understanding of gauge boson production and the
calibration of the detectors.

5.4.6. Summary and Conclusions
Systematic uncertainties due to QED radiative ef-

fects currently run at the level of ≈ 20 MeV/c2 in
the electron channel and ≈ 10 MeV/c2 in the muon
channel. A large contribution to this uncertainty is
the effect of ISR and interference terms, which are not
present in the Berends and Kleiss calculation and the
PHOTOS algorithm that have previously been used in W
production Monte Carlo programs.

A full O(α) calculation by Baur et al. has been
used as the basis for a new event generator. The
results of several pseudo-experiments generated with
different treatments of QED radiative effects agree
with previous estimates. They show that negative
weights need to be treated carefully, especially in the
case of very small soft and collinear photon cuts.

Further studies of QED radiative corrections to W
production will continue as new calculations become
available. It is clear, however, that the use of new
programs such as WGRAD could significantly reduce
systematic uncertainties due to QED radiative cor-
rections in Run II, either through explicit corrections
being applied to the extracted W mass, or through
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their use in new Monte Carlo event generators. The
remaining systematic uncertainties due to QED correc-
tions might then be reduced to the level of 5 MeV/c2

and 10 MeV/c2 in the muon and electron channels,
respectively.

6. Summary of Run II Expectations

As has been discussed in previous sections, many
of the systematic uncertainties in the W mass mea-
surement approximately scale with statistics. These
are listed in Table 6 for the Run Ib CDF muon
analysis and should scale to ≈ 20 MeV/c2 for an
integrated luminosity of 2 fb−1. With reasonable

Table 6
Errors on the CDF Run Ib muon W mass which scale
statistically, in MeV/c2.

Source error
Fit statistics 100
Recoil model 35
Momentum resolution 20
Selection bias 18
Background 25
Momentum scale 85

assumptions for the size of non-scaling systematics
such as those due to PDFs and higher order QED
effects, a 40 MeV/c2 measurement in the muon channel
by each experiment seems achievable. The systematic
uncertainties in the electron channel are less easy to
extrapolate given the particular sensitivity to calorime-
ter scale non-uniformities in this channel and the extra
material in the Run II tracking detectors. The detailed
understanding of detector performance is of course
difficult to anticipate, although it is clear that both
scalable and non-scaling systematics would be easier
to understand if fast Monte Carlo generators including
all the relevant effects were available.

The individual uncertainties for the Run Ib Γ �

measurement are listed in Table 7 together with their
projections for 2 fb−1. All but the last three sources
of error are constrained directly from collider data,
and hence should scale roughly as 1/

√
L. While the

last three uncertainties may decrease somewhat as new
measurements and calculations become available, they
will not scale statistically with the Run II dataset.
Assuming no improvement in these three uncertainties,
while all others scale statistically, each experiment can

Table 8
Dominant uncertainties for contrasting components of
the DØ M � determination. The quantities shown
are the shift in M � for a 1σ change in the relevent
parameter. The EM resolution term refers to the
sampling term for the resolution function. Taken from
Ref. [25].

Source δM � (M � ) δM � (p
�� )

p
�

� 10 50
EM resolution 23 14
hadron scale 20 16

hadron resolution 25 10
backgrounds 10 20

make a ∼ 40 MeV width measurement, combining e
and µ channels for a 2 fb−1 dataset.

7. Other Methods of Determining M � at the
Tevatron

While the traditional transverse mass determination
has been the optimal technique for the extraction of
M � in the low-luminosity running at hadron colliders,
other techniques have been or may be employed in the
future. These methods may shuffle or cancel some of
the systematic and statistical uncertainties resulting in
more precise measurements.

7.1. Transverse Momentum Fitting
As noted above, the most obvious extensions of the
traditional transverse mass approach to determining
M � are fits of the Jacobian kinematical edge from
the transverse momentum of both leptons. DØ has
measured M � using all three distributions and the
uncertainties are indeed ordered as one would expect:
The fractional uncertainties on M � from the DØ
Run I measurements for the three methods of fitting
are: 0.12% (M � ), 0.15% (p

�� ), and 0.21% (p
�� ). As

expected, the p
�� method is slightly less precise than

the transverse mass. However, for a central electron
(|η| < 1), the uncertainty in the p

�� measurement
due to the p

�
� model is 5 times that in the M �

measurement. As can be seen from Table 8, this is
nearly balanced by effects from electron and hadron
response and resolutions which are relatively worse for
M � . Accordingly, when there are sufficient statistics
to enable cuts on the measured hadronic recoil, the
measurement uncertainty from the p

�
� model might be

better controlled and enable the p
�� measurement to

compete favorably with the M � measurement which
relies so heavily on modeling of the hadronic recoil.
In order to optimize the advantages of all three mea-
surements, the DØ final Run I determination of M �
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Table 7
Sources of error for CDF 1994-95 Γ � measurement and extrapolations to 2 fb−1. The last three uncertainties are
common to the e and µ analyses.

CDF 1994-95 (→ 2fb−1)
Source ∆Γ (e, MeV) ∆Γ (µ, MeV)
Statistics 125 (→ 30) 195 (→ 45)
Lepton E or p � non-linearity 60 5
Recoil model 60 90
W P � 55 70
Backgrounds 30 50
Detector modeling, lepton ID 30 40
Lepton E or p � scale 20 15
Lepton resolution 10 20
PDFs (common) 15 15
M � (common) 10 10
QED (common) 10 10
Uncorrelated systematic 112 (→ 25) 133 (→ 30)
Correlated systematic 21 21
Total systematic 115 (→ 33) 135 (→ 37)
Total stat + syst 170 (→ 45) 235 (→ 60)

combined the separate results [25].
The resolution sensitivity for muon measurements is

even less than that for electrons so that has the benefit
of slightly favoring a transverse mass measurement
with muons over that for electrons.

7.2. Ratio Method
DØ has preliminarily determined M � by consideration
of ratios of W and Z boson distributions which are
correlated with M � [26]. The principle is that one
can cancel common scale factors in ratios and directly
determine the quantity r

� � � � ≡ � W
� Z

, which can be

compared with the precise LEP M
� � �

� . The quantities
that have been considered are:

1. r(M � ) and r(p � ), which has the advantage of
being well-studied [27]. There are challenges
with this approach which will be discussed below.

2. r(E
�

) which has the advantage that the peak of
the distribution is precisely correlated with M � ,
but the disadvantage that statistical uncertainty
washes out the position of that peak.

3. The difference of transverse mass distributions
(not as precise as ratios).

The procedure is to compare two distributions, one for
W bosons and a similarly constructed one for Z bosons,
for example, f

�
�

�

(x) as a function of a given variable,
such as x = M � or x = p

�� . Practically speaking, the
Z boson decay electrons are scaled by a factor s and
f

�

(x, s) is compared with f
�

(x) as a function of x,
for different trial values of s. A statistical measure

(the Kolmogorov-Smirnov test) is calculated for each
s and the value of the highest Kolmogorov-Smirnov
probability, s

� � � �
, is declared to be r

� � � � and the
desired mass is then extracted from M � = r

� � � � ×
M

� � �
� . In principle, minimal Monte Carlo fitting is

required, as the measurement is performed with data.
Figure 11 shows the idea with an unsmeared Z boson

transverse mass distribution compared to a simulated
(unsmeared) W boson distribution. Various values of
s lead to various mismatches between f

�
(M � ) and

f
�

(M � ) which can be characterized by a Kolmogorov-
Smirnov probability as a function of M � = s×M

� � �
� .

This probability distribution for an ensemble of 100
Monte Carlo experiments is shown in Fig. 12 resulting
in an RMS of 40 MeV/c2.

However, there are challenges to be faced using this
technique.

• Many systematic effects cancel in this method,
such as electromagnetic scale, hadronic scale,
angular scale, luminosity effects. However, these
are first-order cancellations, some of which in
the end are not sufficient: the second order
effects from these quantities must be considered.
Likewise, most resolutions have additive terms
which do not cancel in a ratio.

• The statistical precision of the Z sample is
directly propagated into the resultant overall
δM � , in contrast to the traditional approach
where the Z boson statistics is a component of
various of the measured resolutions.

• The detector modeling must take into account
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Figure 11. For unsmeared Monte Carlo events, the
transverse mass of simulated W bosons (histogram) is
overlayed with that of Z boson (dots) events in which
the electron has been scaled by a factor which produces
the best match.

small, but important differences between Z and
W events such as underlying event, resolutions,
efficiencies, acceptances, and the effects of the
“extra” electron in Z boson events which compli-
cates underlying event and recoil measurements.

• From the physics model, there are also differences
between the two samples which must be consid-
ered, such as the fact that the production of Z
and W bosons take place from the annihilation of
like and unlike flavored quarks, respectively and
that weak asymmetries lead to different decay
angular distributions.

• Particularly difficult is the need to “extra-smear”
the electrons from Z boson decays. This is due
to the fact that p

�� values for the heavier Z
boson are harder, resulting in a different average
resolution smearing. This same effect is true for
the recoil distributions between Z and W bosons.

• Finally, the acceptances for the two bosons are
different since there are potentially two opportu-
nities to select a Z boson event at the trigger
and event selection stages. Similarly, there is
an acceptance difference in the opposite direction
due to electrons in Z bosons being lost in cracks
between the CC and EC calorimeters in the DØ
detector.

Figure 12. The Kolmogorov-Smirnov probability dis-
tribution for various scales in a comparison of W
and Z boson unsmeared events corresponding to 100
experiments. The RMS is 40 MeV/c2 for 20000 events.

An analysis from Run Ia data from the DØ experiment
has been done [26]. Figure 13 shows data for the scaled
comparison and the unscaled original distributions.
Electrons from the W boson events were selected to
have p

�� > 30 GeV/c, while those from Z boson
events, must satisfy p

�� > 34.1 GeV/c. Electrons
from the W sample and at least one electron from
the Z samples were required to be in the central
calorimeter. This results in 5244 W bosons and 535 Z
boson events. Backgrounds are subtracted according
to the traditional analysis. “Extra-smearing” is done
for each accepted Z boson event (twice, for both
electrons) 1000 times, using a different random seed
for each smearing. Differences in the W and Z boson
production mechanisms and acceptances result in an
effective correction of 109 MeV/c2, while the difference
in radiative corrections results in an effective correction
of −116 MeV/c2. The magnitude of these corrections
is not very different from corrections within the tra-
ditional technique and the demand on knowing the
uncertainties in them is similarly stringent. Figure 14
shows the probability distribution for the result. The
preliminary result from this analysis for central, Run Ia
electrons is

M � = 80.160± 0.360± 0.075 GeV/c2.

Comparison with the traditional Run Ia result from
the same data is readily made, but most appreciated
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Figure 13. (a) The transverse mass distribution
of W (solid) and scaled Z (dots) bosons is shown
along with the hatched fit window. (b) The original
distributions are shown, along with their difference.
The Z distribution has been normalized to that of the
W boson sample.

with a slightly different interpretation of the Run Ia
uncertainties. The Run Ia result [28] from Table 2 is

80.350± 0.140± 0.165± 0.160 GeV/c2

where the first error is the statistical uncertainty
(from W events), the second is the systematic un-
certainty and the third is the electron scale deter-
mination. It is important to note that the scale
uncertainty is almost completely dominated by the
Z boson statistics. Therefore, as a statistical uncer-
tainty, it can be combined with the W uncertainty
of 140 MeV/c2 for the purposes of comparison with
the ratio method. This results in an overall “statis-
tical” uncertainty of 212 MeV/c2. Now, the stronger
systematic power of the ratio method is apparent (75
versus 165 MeV/c2) and the poorer statistical power
(360 versus 212 MeV/c2) is also evident.

7.2.1. Prospects for Run II
This apparent systematic power of the ratio method

can only fully be realized in high luminosity running,
such as Run II. The ratio method analysis of the

Figure 14. The Kolmogorov probability distribution
(hatched) is shown as a function of the W boson
mass used as a scale factor. The dotted curve is the
Kolmogorov Likelihood and the dashed curve is the
χ2/ndf distribution (right axis).

DØ Run Ib data was recently completed [29]. The
Run Ib sample has 82 pb−1 of data (1994–1995 data
set), 33,137 W and 4,588 Z events (electrons in
both Central and End Calorimeters of DØ) after the
standard electron selection cuts. TheW mass resulting
from the ratio fit is M � = 80.115 ± 0.211 (stat.) ±
0.050 (syst.) GeV/c2. The statistical uncertainty is in
good agreement with an ensemble study of 50 Monte
Carlo samples of the same size (80.36± 0.25 GeV/c2).

Early efforts at predicting the results for a Run II
sample of 100,000 W bosons is shown in Fig. 15 with
full detector acceptances and resolutions taken into
account. The statistical precision from this fit is of the
order of 20 MeV/c2 and the systematic uncertainties
may be nearly negligible.

8. Prospects for Measuring M � at Other Ac-
celerators

8.1. LEP II
The prospects for determination of M � at LEP II
have become fully understood in the last year with
the accumulation of hundreds of pb−1 at four center
of mass energies. Here we review the status as of
the Winter 2000 conferences and project the prospects
through to the completion of electron-positron running
at CERN. For a review, see Ref. [30,31].

8.1.1. Data Accumulation
The annihilation of e+e− into W boson pairs occurs
via three diagrams: a t-channel neutrino exchange and
s-channel Z or γ exchange. The final states from the
decays of the two W bosons are: both W bosons decay
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Figure 15. Same as Fig. 13a, but for 100,000W bosons.

into hadrons (qqqq, “4-q” mode); one W decays into
quarks, and the other into leptons (e, µ , τ and
their neutrinos, “qq`ν”); and both W bosons decay
leptonically. Collectively, the latter two modes are
referred to as “non-q” modes. The efficiencies and
sample purities are typically quite high, as shown in
Table 9.

Table 9
Efficiencies and sample purity for a representative
LEP II experiment (OPAL).

Channel ε (%) purity (%)
qqqq 85 80
qqeν 85 80
qqµν 87 80-90
qqτν 66 80

The results by Spring 2000 come from running at
center of mass energies: 172, 183, 189, and several
energies between 190 GeV and 200 GeV. There is
recent running above 200 GeV for a total of more than
400 pb−1 accumulated per experiment. M � results
are final for all four experiments for the 172 and 183
GeV sets [32–35] and preliminary for the 1998 189 GeV
running [36–39]. In addition, ALEPH [40], L3 [41], and
OPAL [42] have preliminary results from the collection
of runs in the range from 190 GeV to 200 GeV. Table 10
shows the approximate accumulated running to date
(July 2000).

There are broadly two methods employed for de-
termining M � at LEP II. The first method is the
measurement of the threshold of the WW cross section
and the second is the set of constrained fits possible

Table 10
Approximate accumulated running per experiment.
The 2000 totals are current as of the first week in
July 2000.

year beam energy (GeV)
∫
Ldt (pb−1)

1996 80.5-86 25
1997 91-92 75
1998 94.5 200
1999 96-102 250
2000 100-104 100

for the various measured final states. The latter set of
methods constitute the prominent results and employ
construction of invariant masses making use of the
beam constraints. There are a variety of methods,
some of which make use of the constraint M �

1 = M �
2

and some of which involve sophisticated multivariate
analyses. The spirit of approach is much like the
strategies employed in the top quark mass analyses of
CDF and DØ.

The results are treated separately for the qq`ν and
qqqq final states due to the significant differences in
systematic uncertainties. Typical uncertainty contri-
butions are listed in Table 11 [43]. Many of the
experimental uncertainties, such as scale, background,
and Monte Carlo generation, are statistically limited.
For example, there is a fixed amount of

√
s = M �

running in each running period and that contributes a
statistical component to the energy scale uncertainty.

The dominant uncertainty comes from the final state
effects in the qqqq channel. Because the outgoing
quarks can have color connections among them, the
fragmentation of the ensemble of quarks into hadrons
are not independent. This leads to an theoretical
uncertainty called “Color Reconnection” (CR). In
addition, since the hadronization regions of the W+

and W− overlap, coherence effects between identical
low-momentum bosons originating from different W ’s
due to Bose-Einstein (BE) correlations may be present.
The combined total of these two effects is currently
accepted to contribute 52 MeV/c2 of uncertainty to the
qqqq results. Ultimately, the non-CR/BE uncertainty
will likely be the uncertainty in modeling single-quark
fragmentation and associated QCD emission effects.

8.1.2. Results, April 2000
The preliminary results for M � from the combined
data taking through 1999 running period are shown
in Table 12. The combined LEP result for the qq`ν
channels is [44]:

M
� � � �

� = 80.398± 0.039± 0.031± 0.017 GeV/c2
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Table 11
Typical systematic uncertainties on M � for a generic
LEP II experiment from data sets corresponding to
the 189 GeV running. Entries are approximate and
broad averages meant to give a relative sense of scale
only. The Source labels are generally self-explanatory,
with CR/BE standing for “Color Reconnection” and
“Bose-Einstein” respectively.

Source qq`ν (MeV/c2) qqqq (MeV/c2)
ISR 15 15
frag 25 30

4 fermion 20 20
detector 30 35

fit 30 30
bias 25 25

bckgrnd < 5 15
MC stat 10 10
Subtotal 61 67

LEP 17 17
CR/BE 60
Total 63 85

where the first error is statistical, the second sys-
tematic, and the third the LEP energy scale. The
combined preliminary result for the qqqq channel is:

M4 �
� = 80.408± 0.037± 0.031± 0.016± 0.052 GeV/c2

where the first three errors are the same as for the
qq`ν result and the fourth error is due to the combined
CR/BE theoretical uncertainty. Taking into account
the correlations, the combined preliminary result from
constrained fitting for all channels is:

M4
�

� = 80.401± 0.027± 0.031± 0.017± 0.018 GeV/c2

where the four errors are in the same order as for the
qqqq result. The current overall result comes from
combining the above with that from the threshold
measurement of

M
� (
�

)� = 80.400± 0.220± 0.025 GeV/c2.

Here the first error is combined statistical and system-
atic and the second error is the error due to LEP energy
scale. This results in the preliminary overall LEP II
(April 2000) value of

M
� � �

� = 80.401± 0.048 GeV/c2.

8.1.3. Prospects for the Future
The current results are preliminary and running is

underway at this writing with the end of LEP II sched-
uled for the beginning of October, 2000. Eventually,
the 1999 data will be fully analyzed and, with the

Table 12
Preliminary LEP II results for M � by experiment and
according to reconstructed channel. The results are
from the combination of 1996-1998 running (all exper-
iments) plus preliminary results from 1999 running for
ALEPH, DELPHI, L3, and OPAL.

M � (GeV/c2)
Experiment qq`ν qqqq

ALEPH 80.435± 0.079 80.467± 0.086
DELPHI 80.230± 0.140 80.360± 0.115

L3 80.282± 0.102 80.489± 0.132
OPAL 80.483± 0.078 80.380± 0.103

accumulation of the final 2000 running, should result
in a combined statistical and systematic uncertainty
(excluding the CR/BE and LEP contributions) of
approximately 35 MeV/c2 [1]. With the overall contri-
bution of 18 MeV/c2 and 17 MeV/c2 from the CR/BE
and LEP errors respectively, the ultimate limit from
LEP II W boson pair determination of M � should be
approximately 40 MeV/c2.

8.2. LHC
It was pointed out several years ago [45] that the

LHC has the potential to provide an even more precise
measurement of M � . This suggestion was based on
the observations that the precision measurement of
M � at hadron colliders has been demonstrated to
be possible; that the statistical power of the LHC
dataset will be huge; and that triggering will not be a
problem. These authors estimated that M � could be
determined to better than 15 MeV/c2. More recently,
the ATLAS collaboration has studied the question
in more detail [46] and arrived at an uncertainty of
25 MeV/c2, per experiment, in the electron channel
alone.

Achieving such precision will require substantial
further reduction of theoretical and systematic un-
certainties, all of which must be reduced to the ≤
10 MeV level. This includes the contributions from
the W production model, parton distributions, and
radiative decays, as well as experimental systematics
such as the energy-momentum scale of the detector and
any complications from underlying energy deposition
even in the low luminosity running. While some
have questioned whether such “heroic” progress will
ever be possible, we would argue that it is futile to
debate the question at this time. Rather, the best
indicator of future LHC precision will be to see how
well the Fermilab experiments manage to deal with the
significant improvements in systematics which will be
necessary in order to match the anticipated precision
for m � . The point to be made is this: should it prove
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necessary to determine the W mass to a precision of
10–20 MeV/c2, the LHC will have the statistical power
to continue the hadron collider measurements into this
domain. The success of such a program will then
depend on

• Consensus in the field that such precision is
needed. One such justification might be to distin-
guish among different models of supersymmetry-
breaking using global fits including M � , the top
mass and the light Higgs mass. It is likely that
a big parallel effort to push down the top mass
uncertainty to the 1 GeV/c2 level would also then
be needed;

• A major, multi-year effort within the LHC ex-
periments in order to understand their detectors
and their response to leptons, missing transverse
energy and recoil hadrons at the required level.
This is a measurement which places heavy bur-
dens on manpower as it requires an understand-
ing of the detector which is more precise than for
any other measurement;

• A comparable major effort to reduce the theo-
retical uncertainties through better calculations,
through control-sample measurements, and work
on parton distributions.

This is not a program that will be undertaken lightly.
But should it turn out to be necessary, the experience
of Run II at the Tevatron will be invaluable in carrying
it out.

8.3. A Linear Collider
The W mass can be measured at a Linear Col-

lider (LC) in W+W− production either in a dedi-
cated threshold scan operating the machine at

√
s ≈

161 GeV, or via direct reconstruction of the W bosons
in the continuum (

√
s = 0.5−1.5 TeV). Both strategies

have been used with success at LEP II.
In the threshold region, the W+W− cross section is

very sensitive to the W mass. The sensitivity is largest
in the region around

√
s = 161 GeV [47] at which point

the statistical uncertainty is given by

δM
� � � �� ≈ 90 MeV/c2

[
ε
∫
Ldt

100 pb−1

]−1
�
2

. (8)

Here, ε is the efficiency for detecting W bosons. For
ε = 0.67 and an integrated luminosity of 100 fb−1, one
finds from Eq. (8)

δM
� � � �� ≈ 3.5 MeV/c2. (9)

Assuming that the efficiency and the integrated
luminosity can be determined with a precision of ∆ε =

0.25% and ∆L = 0.1%, M � can be measured with an
uncertainty of [48]

δM � ≈ 6 MeV/c2, (10)

provided that the theoretical uncertainty on the
W+W− cross section is smaller than about 0.1% in
the region of interest.

Presently, the W pair cross section in the threshold
region is known with an accuracy of about 1.4% [49]. In
order to reduce the theoretical uncertainty of the cross
section to the desired level, the full O(α) electroweak
corrections in the threshold region are needed. This
calculation is extremely difficult. In particular, cur-
rently no practicable solution of the gauge invariance
problem associated with finite W width effects in loop
calculations exists. The existing calculations which
take into account O(α) electroweak corrections all
ignore non-resonant diagrams [50].

If one (pessimistically) assumes that the theoretical
uncertainty of the cross section will not improve, the
uncertainty of the W mass obtained from a threshold
scan is completely dominated by the theoretical error,
and the precision of the W mass is limited to [47]

δM � ≈ δM � � � ���� ≈ 17 MeV/c2

[
∆σ

σ
× 100%

]
(11)

≈ 24 MeV/c2.

Using direct reconstruction of W bosons and as-
suming an integrated luminosity of 500 fb−1 at

√
s =

500 GeV, one expects a statistical error of δM � � � �� ≈
3.5 MeV/c2 [51]. Systematic errors are dominated
by jet resolution effects. Using Zγ, Z → 2 jet
events where the photon is lost in the beam pipe for
calibration, a systematic error δM

� � � �
� < 10 MeV/c2 is

expected to be achieved. The resulting overall preci-
sion of the W boson mass from directW reconstruction
at a Linear Collider operating at an energy well above
the W pair threshold is

δM � ≈ 10 MeV/c2. (12)

9. Theoretical Issues at high
√
s

Future hadron and lepton collider experiments are
expected to measure the W boson mass with a preci-
sion of δM � ≈ 10 − 20 MeV/c2. For values of δM �

smaller than about 40 MeV/c2, the precise definition of
the W mass and width become important when these
quantities are extracted.

In a field theoretical description, finite width effects
are taken into account in a calculation by resumming
the imaginary part of the W vacuum polarization.
This leads to an energy dependent width. However,
the simple resumming procedure carries the risk of
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breaking gauge invariance. Gauge invariance works
order by order in perturbation theory. By resumming
the self energy corrections one only takes into account
part of the higher order corrections. Apart from being
theoretically unacceptable, breaking gauge invariance
may result in large numerical errors in cross section
calculations.

In order to restore gauge invariance, one can adopt
the strategy of finding the minimal set of Feynman di-
agrams that is necessary for compensating those terms
caused by an energy dependent width which violate
gauge invariance [52]. This is relatively straightforward
for a simple process such as qq̄′ → W → `ν [53], but
more tricky for e+e− → W+W− → 4 fermions, in
particular when higher order corrections are included.
The so-called complex mass scheme [54], which uses
a constant, ie. an energy independent width, offers
a convenient alternative. At LEP II energies,

√
s ≈

200 GeV, the differences in the e+e− → 4 fermions
cross section using an energy dependent and a constant
width are small. However, at Linear Collider energies,√
s = 0.5−2 TeV, the terms associated with an energy

dependent width which break gauge invariance lead
to an overestimation of the cross section by up to a
factor 3 [54].

For qq̄′ → W → `ν, the parameterizations of the
W resonance in terms of an energy dependent and a
constant W width are equivalent. The W resonance
parameters in the constant width scenario, M � and
Γ � , and the corresponding quantities, M � and Γ � , of
the parameterization using an energy dependent width
are related by a simple transformation [55]

M � = M �
(
1 + γ2

)−1
�
2
, (13)

Γ � = Γ �
(
1 + γ2

)−1
�
2
, (14)

where γ = Γ � /M � . The W mass obtained in the
constant width scenario thus is about 27 MeV/c2

smaller than that extracted using an energy dependent
width.

In the past, an energy dependent W width has
been used in measurements of the W mass at the
Tevatron [56,57]. The Monte Carlo programs available
for the W mass analysis at LEP II (see Ref. [50] for an
overview) in contrast use a constant W width. Since
the difference between the W mass obtained using
a constant and an energy dependent width is of the
same size or larger than the expected experimental
uncertainty, it will be important to correct for this
difference in future measurements.

10. Conclusions

The measurements of the W mass and width in
Run I already represent great experimental achieve-

ments and contribute significantly to their world av-
erage determinations. Close inspection of the various
systematic error sources leads us to believe that a W
mass measurement in Run II at the 30 MeV/c

2
level

per experiment is achievable, and this compares well
to the expected uncertainty on the W mass measured
at LEP II. Each experiment is expected to measure the
W width to a similar precision with 2 fb−1 of data.

Alternative methods for determining M � at the
Tevatron have been discussed and may turn out to be
more appropriate in the Run II operating environment
than the traditional transverse mass fitting approach.
Determination of the W mass at the LHC will be
extremely challenging, using detectors that are not op-
timized for this measurement. A future linear collider
should do significantly better. Clearly, the W mass
and width measurements at the Tevatron in Run II
will remain the best hadron collider determinations of
these quantities for many years and will compete with
the best measurements made elsewhere.
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The forward-backward asymmetry of `+`− events in Run II can yield a measurement of the effective weak mixing angle
sin2 θ̄W and can provide a test of the standard model γ∗/Z interference at `+`− invariant masses well above the 200 GeV
center of mass energy of the LEP II collider. The asymmetry at large partonic center of mass energies can also be used to
study the properties of possible new neutral gauge bosons. We describe an updated study of the forward-backward asymmetry
and give estimates of the statistical and systematic uncertainties expected in Run II. The prospects for measuring the weak
mixing angle at the LHC and a linear collider operating at

√
s = MZ are also briefly described.

1. Introduction

In this note we present an updated study of the
prospects for measurement of the forward-backward
asymmetry in pp̄ → γ∗/Z → `+`− events. This work
extends our earlier study described in the TeV2000 re-
port [1] in several respects: (i) we include the effects of
QED corrections; (ii) we include the effects of expected
Run II DØ detector resolutions and efficiencies; (iii)
we consider systematic errors in more detail; and (iv)
we include a simulation of the muon channel process
pp̄→ γ∗/Z → µ+µ−.

The forward-backward asymmetry (A � � ) in pp̄ →
γ∗/Z → `+`− events arises from the parton level
process qq̄ → γ∗/Z → `+`−. This asymmetry depends
on the vector and axial-vector couplings of the quarks
and leptons to the Z boson and is therefore sensitive
to the effective weak mixing angle sin2 θ̄ � . The
current world average value of sin2 θ̄ � from LEP and
SLD asymmetry measurements is sin2 θ̄ � = 0.23147±
0.00017 [2]. As will be seen from our results it will
be necessary to achieve high luminosity (> 10 fb−1)
and combine the results from the electron and muon
channels and the results from DØ and CDF to achieve
a precision comparable to this.

The SM tree level prediction [3] for A � � as a
function of ŝ for qq̄ → γ∗/Z → e+e− is shown in
Fig. 1 for u and d quarks. These are the same asymme-
tries as encountered in the inverse e+e− annihilation
reactions. The largest asymmetries occur at parton
center-of-mass energies of around 70 GeV and above
110 GeV. At the Z-pole the asymmetry is dominated
by the couplings of the Z boson and arises from the
interference of the vector and axial components of
its coupling. The asymmetry is proportional to the
deviation of sin2 θ̄ � from 1

4 . At large invariant mass,

the asymmetry is dominated by γ∗/Z interference and
is almost constant (≈ 0.6), independent of invariant
mass.

Figure 1. The standard model tree level prediction
of the forward-backward asymmetry as a function of
e+e− invariant mass for uū→ e+e− and dd̄→ e+e−.

With sufficient statistics in Run II the forward-
backward asymmetry can be used to measure sin2 θ̄ � ,
which in turn can provide a constraint on the standard
model complementary to the measurement of the W
boson mass. The Tevatron also allows measurement
of the asymmetry at partonic center-of-mass energies
above the center of mass energy of LEP II. This
measurement can be used, not only to confirm the
standard model γ∗/Z interference which dominates
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in this region, but also to investigate possible new
phenomena which may alter A � � , such as new neutral
gauge bosons [4] or large extra dimensions [5].

CDF have measured the forward-backward asymme-
try at the Tevatron using e+e− pairs in 110 pb−1 of
data at

√
s = 1.8 TeV [6]. They obtain A � � = 0.070±

0.016 in the mass region 75 GeV < m � + � − < 105 GeV,
and A � � = 0.43±0.10 in the regionm � + � − > 105 GeV.
The much larger Run II statistics will enable A � � to
be measured with an uncertainty reduced by over an
order of magnitude.

2. Simulation

The simulations presented here use the zgrad
Monte Carlo program [7], which includes O(α) QED
radiative corrections to the process pp̄ → γ∗/Z →
`+`−. We simulate this process at

√
s = 2.0 TeV

using the MRST parton distributions as our default
set. Since the radiative corrections are included in
zgrad, we denote the process of interest by pp̄ →
γ∗/Z → `+`−(γ) in the remainder of this paper. The
zgrad program includes real and virtual corrections
in the initial and final states.

In our simulations, the effects of detector resolution
are modeled by smearing the 4-momenta of the parti-
cles from zgrad according to the estimated resolution
of the Run II DØ detector. We smear the 4-momenta
of electrons, positrons and photons according to the
energy resolution σ � � of the calorimeters, which have
been parametrized using constant, sampling and noise
terms as

(σ � �

E

)2

=





c2� � +

(
s � �√
E �

)2

+
(
n � �
E

)2

Central Calorimeter

c2� � +

(
s � �√
E

)2

+
(
n � �
E

)2

End Calorimeters

(1)

where we use the parameters relevant for the Run I
detector, c � � = 0.0115, s � � = 0.135, and n � � =
0.43 for the CC, and c � � = 0.0100, s � � = 0.157, and
n � � = 0.29 for the EC. With the addition of the 2 T
solenoidal magnetic field in Run II, only minor changes
in these parameters are expected. The transverse
momentum of muons in the Run II detector will be
measured in the central tracking system, consisting
of the Central Fiber Tracker (CFT) and the Silicon
Microstrip Tracker (SMT). The momentum resolution
of the tracking system has been studied using the
fast Monte Carlo mcfast. From these studies the

resolution in 1/p � is parametrized as:

σ

(
1

p �

)
=

√√√√( α
L2

)2

+

(
γ

p � √L| sin θ|

)2

(2)

where

L =

{
1 0 < θ ≤ θ �
tan

�

tan
�
c

θ � < θ < 90◦

}
. (3)

Here α = 0.0017 GeV−1, γ = 0.018, L is the fraction of
the projection of the track length in the bending plane
which is measured in the Tracker, and θ � ≈ 23◦ is the
polar angle beyond which the number of CFT layers
crossed by a track starts to decrease. The first term
in Eq. (3) is due to the detector resolution while the
second term is due to multiple scattering.

Figure 2 shows the transverse momentum resolution
as a function of detector pseudorapidity |η � � � | for tracks
with a p � of 1, 20 and 100 GeV, while Fig. 3 shows the
resolution as a function of p � and |η � � � | in the form
of a contour plot. For central tracks (η = 0) with
p � = 45 GeV, the resolution is σ(p � )/p � = 8%, to be
compared with the calorimeter energy resolution for
45 GeV electrons of σ(E)/E = 2.5%.
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Figure 2. Parametrized transverse momentum resolu-
tion for the DØ Run II tracking system (dotted lines).
The solid lines are the results of a simple Monte Carlo
simulation taken from the DØ SMT Technical Design
Report [8].
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Figure 3. Transverse momentum resolution for the cen-
tral tracking system plotted as a function of transverse
momentum and pseudorapidity.

We assume an overall detection efficiency of 75%
for e+e− events and 65% for µ+µ− events. These
efficiencies are rough estimates of the effects of trig-
ger and particle identification efficiencies expected in
Run II. The results can be updated once more realistic
numbers for these efficiencies become available.

The zgrad program generates weighted events. Due
to the occurrence of negative weights, we did not
attempt to unweight the events. Thus, we work with
weighted events and properly account for the weights
in our calculations of the forward-backward asymmetry
errors. The forward-backward asymmetry is defined by

A � � =
σ � − σ �

σ � + σ �
(4)

where σ � and σ � are the forward and backward cross
sections, defined by

σ � =

∫ 1

0

dσ

d(cosθ∗)
d(cosθ∗)

σ � =

∫ 0

−1

dσ

d(cosθ∗)
d(cosθ∗) (5)

and θ∗ is the angle of the lepton in the Collins-Soper
frame [9].

The statistical error on A � � is given by

δA � � = 2

√
σ2

� (δσ � )2 + σ2� (δσ � )2

(σ � + σ � )2
(6)

where δσ � , δσ � are the uncertainties in the forward
and backward cross sections. For unweighted events,

this simplifies to

δA � � =
2

N � +N �

√
N � N �

N � +N �
(7)

where N � , N � are the numbers of forward and
backward events. However, zgrad generates weighted
events and, therefore, we use Eq. (6) where δσ �
and δσ � , are calculated using the appropriate event
weights.

The selection cuts used in our study are summarized
in Table 1. In the electron channel we require one of the
electrons to be in the CC (|η � � � | < 1.0), while the other
electron may be in the CC or in the EC (|η � � � | < 1.0
or 1.5 < |η � � � | < 2.5).

In the muon channel we require both muons to be
within |η � � � | < 1.7. In Run II the muon coverage is
expected to extend up to |η � � � | = 2.0. We chose to limit
the muon acceptance to |η � � � | = 1.7 since Monte Carlo
events were already generated with this restriction
and large CPU time would have been required to
re-generate the events.

We account in our simulation for the granularity
of the DØ calorimeter. If the photon is very close
to the electron its energy will be merged with that
of the electron cluster. Thus, in the simulation we
combine the photon and electron 4-momenta to form
an effective electron 4-momentum if the photon is

within ∆R � � ≡
√

∆η2
� � + ∆φ2

� � < 0.2. If the photon

falls within 0.2 < ∆R � � < 0.4, we reject the event if
E � /(E � +E � ) > 0.15, since the event will not pass the
standard isolation criterion imposed on electrons.

If a photon is very close to a muon and it deposits
sufficient energy in the calorimeter close to the muon
track, the energy deposition in the calorimeter will not
be consistent with the passage of a minimum ionizing
muon. Therefore, in the simulation we reject events if
∆R � � < 0.2 and E � > 2 GeV.

Table 1
Selection criteria for e+e− and µ+µ− events.

e+e− µ+µ−

Selection cut e1 e2 µ1 µ2

p � (GeV) > 25 > 25 > 20 > 15
|η � � � | < 1.0 < 1.0 < 1.7 < 1.7

or 1.5− 2.5
m � + � − (GeV) > 40 > 40 > 40 > 40
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3. Results

The `+`− invariant mass distributions for pp̄ →
γ∗/Z → `+`−(γ) at

√
s = 2.0 TeV from the

zgrad simulations, using the MRST parton distri-
bution functions are shown in Fig. 4. The thin line
shows dσ/dm � + � − without any kinematic cuts applied
and with no detector acceptance or resolution effects
included. In order to obtain sufficient statistical
precision a large number of events were generated in
multiple runs covering overlapping regions of m � + � − .
The thick line shows dσ/dm � + � − after kinematic cuts
and detector effects are included. The error bars
represent the statistical errors only, calculated from
Eq. (6), assuming an integrated luminosity of 10 fb−1.

Fig. 5 shows the forward-backward asymmetry as a
function of m � + � − . The solid line shows A � � without
any kinematic cuts applied and with no detector accep-
tance or resolution effects included. The solid points
show A � � after kinematic cuts and detector effects are
included. The error bars represent the statistical errors
only, calculated from Eq. (6), assuming an integrated
luminosity of 10 fb−1. As can be seen, detector
resolution and acceptance effects significantly alter the
shape of the A � � vs. m � + � − curve, especially at low
di-lepton invariant masses. In this region, the effect
of CC/EC acceptance increases A � � , while restricting
µ+µ− events to be in the central region decreases
the asymmetry. This is also true of e+e− events if
only CC/CC events are considered. In the vicinity
of the Z-pole the energy resolution is better than the
p � resolution, and hence the A

� + � −
� � is altered less

than A
� + � −
� � . In these plots the A � � shown is the

reconstructed A � � without corrections for acceptance
or resolution effects.

In order to obtain a measurement of the weak mixing
angle we assume the relationship

A � � = a+ b sin2 θ̄ � (8)

so that the statistical error on sin2 θ̄ � is given by

δ sin2 θ̄ � =
δA � �

b
. (9)

The quantity b is determined by varying sin2 θ̄ � in the
Monte Carlo simulations. Since A � � is determined
over a finite range of di-lepton invariant mass, we
have investigated the effect of the lower and upper
m � + � − cuts on δ sin2 θ̄ � . The optimal precision is
obtained for 75 GeV < m � + � − < 105 GeV, i.e. a
mass window encompassing the Z-pole. This is to be
expected because the sensitivity b is maximal at the
Z-pole and this region is where the cross section peaks
and hence the statistical error is smallest. Thus, the
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Figure 4. Invariant mass m � + � − distributions for (a)
e+e− events and (b) µ+µ− events. The thin line is the
distribution obtained with no cuts or detector effects
applied and the thick line is the resulting distribution
after selection cuts and detector effects are included.

A � � values and errors presented in the remainder of
this paper are all obtained with a di-lepton invariant
mass cut of 75 GeV < m � + � − < 105 GeV. Table 2
shows the resulting statistical uncertainties obtained
from the electron and muon channels. The e+e− and
µ+µ− channels yield similar uncertainties on A � � and
sin2 θ̄ � . In both channels the effect of the selection
cuts is to reduce the sensitivity b from about 3.5 to
about 2.8.

The effects of NLO QCD corrections to the process
pp̄ → γ∗/Z → `+`− are not included in zgrad, so
we estimate these using the O(α � ) event generator
described in [7]. Using the same method as described
in Section 2, we calculate the change in the forward-
backward asymmetry and the shift in sensitivity due
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Table 2
Uncertainties on A � � and sin2 θ̄ � in the invariant mass range 75 GeV < m � + � − < 105 GeV for an integrated
luminosity of 10 fb−1. Also shown are the assumed event detection efficiency, the number of events passing all the
cuts N �

� � , the forward-backward asymmetry A � � , and the sensitivity b.

Process Selection cuts Efficiency N �
� � A � � δA

� � � �
� � b δ sin2 θ̄ �

Z → e+e− no 100% 1.78× 106 0.0551 0.0008 3.43 0.0002
Z → e+e− yes 75% 3.82× 105 0.0515 0.0014 2.78 0.0005
Z → µ+µ− no 100% 1.87× 106 0.0534 0.0007 3.51 0.0002
Z → µ+µ− yes 65% 5.67× 105 0.0420 0.0011 2.62 0.0004

Figure 5. Forward-backward asymmetry A � � vs.
di-lepton invariant mass for (a) e+e− events and
(b) µ+µ− events. The solid line is the distribution
obtained with no cuts or detector effects applied and
the points are the resulting distribution after selection
cuts and detector effects are included. The error bars
represent the statistical errors for a data sample of
10 fb−1.

to NLO QCD corrections. Thus, we write

∆A � � = A
O( �

s)
� � −A

� �

� � (10)

∆b = bO( �
s) − b

� �

(11)

where LO denotes the leading-order quantities. For
events generated including detector effects we find the
shift in A � � to be negligible for e+e− events and
−13% for µ+µ− events. The shift in sensitivity is
∆b/b

� �

≈ −3.4% for e+e− events and ≈ −25% for
(µ+µ−) events. Thus, NLO QCD effects decrease the
sensitivity to sin2 θ̄ � by 3.4% in the e+e− channel and
25% in the µ+µ− channel.

4. Systematic Uncertainties

4.1. Parton Distribution Functions
Since the vector and axial couplings of the u and

d quarks to the Z boson are different, the lepton
forward-backward asymmetry is expected to depend
on the ratio of the u to d quark parton distribution
functions. Thus, the choice of the parton distribution
functions (PDF’s) will affect the measured lepton
forward-backward asymmetry.

We have run simulations with six PDF’s from the
MRS [10] and CTEQ [11] sets to study the effect of
the PDF’s on the asymmetry. Fig. 6 shows the e+e−

and µ+µ− asymmetries and their statistical errors for
each PDF.

The largest deviation from the MRST value for A � �

is 0.0018 for the e+e− channel and 0.0015 for the µ+µ−

channel. While these numbers are of the same order
as the statistical error expected on A � � for 10 fb−1,
we expect that in Run II our knowledge of the PDF’s
will improve considerably, e.g. from the constraints
imposed by the Run II W asymmetry measurements.
Thus, we expect a significantly decreased systematic
error due to the uncertainty in the PDF’s which
will likely render it insignificant compared with the
statistical error in the measurement. For example, if
the PDF uncertainty scales as 1/

√
N , the uncertainty

in A � � would be δA � � ≈ 0.00018 (0.00015) for an
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Variation of Forward-Backward Asymmetry with PDF
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Figure 6. Variation of the forward-backward asymme-
try for e+e− and µ+µ− events, including selection cuts
and detector effects.

integrated luminosity of 10 fb−1 in the e+e− (µ+µ−)
channel.

4.2. Energy Scale Calibration Uncertainties
The energy scale uncertainty, or the uncertainty in

mapping the calorimeter response to the true electron
energy, affects the forward-backward asymmetry by
causing a shift in the `+`− invariant mass range over
which we integrate A � � . The effect is significant in
the Z-pole region, but at large invariant masses A � �

is essentially constant and the energy scale uncertainty
does not play a role. For electrons, the measured
energy can be related to the true energy by

E � � � � = αE � � � � + δ (12)

where the scale factor α and offset δ are determined
by calibration of the calorimeters. In Run I DØ deter-
mined α = 0.9533± 0.0008 and δ = −0.16+0 � 03

−0 � 21 GeV.
Assuming these uncertainties in α and δ, we find a

systematic error of δA � � = 0.0002 due to the overall
energy scale uncertainty.

4.3. Uncertainty due to Backgrounds
Backgrounds are not included in the simulations

above, but we can estimate the uncertainty due to
backgrounds as follows. If we assume that the fraction
of observed events which are due to backgrounds is
α± δα, then the uncertainty in the forward-backward
asymmetry will be

δA � � = 2
√

2
N � N �

(N � +N � )2
δα (13)

where N � , N � are the numbers of background-
subtracted forward and backward events, and we have
assumed that the background events are symmetric in
cosθ∗. If we assume that the error in the background
fraction δα scales as the inverse of the integrated
luminosity, we can extrapolate from the uncertainties
in the Run I CDF and DØ data samples to estimate the
error. The Run I uncertainties were δα ≈ 0.1− 1.0%.
Thus, for an integrated luminosity of 10 fb−1, we
obtain an uncertainty on A � � of δA � � = 0.00014.

4.4. Summary of Uncertainties in sin2 θ̄ �

Table 3 summarizes the statistical and individ-
ual systematic uncertainty estimates expected with
10 fb−1 of data. We estimated the uncertainties due
to electron energy resolution and muon transverse
momentum resolution to be negligible.

4.5. Conclusions
The measurement of the forward-backward asymme-

try in e+e− and µ+µ− events in Run II provides a
means to test the standard model γ∗/Z interference at
`+`− invariant masses well above the center of mass
energy of the LEP II collider. The estimated DØ
precision on A � � achievable with 10 fb−1 integrated
luminosity is shown in Fig. 5.

In the vicinity of the Z-pole this measurement can
also be used to determine the effective weak mixing
angle sin2 θ̄ � . The optimal precision on sin2 θ̄ � is
obtained for 75 GeV < m � + � − < 105 GeV, i.e. a
mass window encompassing the Z-pole. This is to
be expected because the sensitivity b is maximal at
the Z-pole and this region is where the cross section
peaks and hence the statistical error is smallest. For
10 fb−1 we estimate that the total error on sin2 θ̄ �

will be 0.0005 in the electron channel and 0.0006 in
the muon channel, assuming that systematic errors
scale as the inverse of the square root of the integrated
luminosity. One would expect similar precision from
CDF, and combining the results of the two experiments
in both channels the overall uncertainty would be
δ sin2 θ̄ � ≈ 0.00028. Therefore, if integrated luminosi-
ties in excess of 10 fb−1 can be achieved in Run II,
it appears that the determination of sin2 θ̄ � will have
comparable precision to the current world average of
the measurements from LEP and SLD.

5. Measuring A � � at the LHC

At the LHC, the Z → `+`− cross section is approxi-
mately a factor 7 larger than at the Tevatron. However,
the measurement of the forward backward asymmetry
is complicated by several factors. In pp collisions, the
quark direction in the initial state has to be extracted
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Table 3
Summary of uncertainties on A � � and sin2 θ̄ � in the invariant mass range 75 GeV < m � + � − < 105 GeV for an
integrated luminosity of 10 fb−1. The effects of O(α) QED corrections and NLO QCD corrections have been taken
into account.

e+e− µ+µ−

Error source δA � � δ sin2 θ̄ � δA � � δ sin2 θ̄ �

Statistical 0.0014 0.0005 0.0011 0.0006

Systematics 0.0003 0.0001 0.0002 0.00010

PDF 0.00018 0.00007 0.00015 0.00008
EM scale 0.0002 0.00007 − −
Backgrounds 0.00014 0.00005 0.00014 0.00007

Total uncertainty 0.0014 0.0005 0.0011 0.0006

from the boost direction of the `+`− system with
respect to the beam axis. At LHC energies, the sea-sea
quark flux is much larger than at the Tevatron. As a
result, the probability, f � , that the quark direction and
the boost direction of the di-lepton system coincide
is rather small. The forward backward asymmetry
is therefore smaller than at the Tevatron, and the
sensitivity to sin2 θ̄ � at the LHC with 100 fb−1 per
lepton channel and experiment [7,12] is similar to that
estimated for the Tevatron with 10 fb−1 (see Sec. 4.5).

Restricting the A � � measurement to events which
satisfy |y(`+`−)| > 1 in addition to the |y(`)| < 2.5
cut improves the significance of the measurement by
about a factor 1.5. Events with a large di-lepton
rapidity originate from collisions where at least one
of the partons carries a large fraction x of the proton
momentum. Since valence quarks dominate at high
values of x, a cut on y(`+`−) increases f � and thus the
asymmetry. However, the gain due to the larger asym-
metry is partially cancelled by the loss of statistics,
leaving a modest improvement only.

In order to achieve a precision better than the
current value of δ sin2 θ̄ � = 1.7× 10−4 [13], it will be
necessary to detect one of the leptons in the rapidity
range up to |y(`)| < 5 at the LHC. If this can be
done, one expects that the weak mixing angle can be
determined with a precision of

δ sin2 θ̄ � = 1.4× 10−4, (14)

per lepton channel and experiment for an integrated
luminosity of 100 fb−1. In order to reach the precision
given in Eq. (14), a jet rejection factor of 10 − 100
has to be achieved in the forward rapidity region
2.5 < |y(`)| < 5, and the lepton acceptance times the
reconstruction efficiency as a function of y(`) has to be
known to 0.1% or better [12].

For comparison, at a Linear Collider operating at

√
s = M � with a luminosity of a few ×1033 cm−2 s−1,

it is expected that the weak mixing angle be deter-
mined with a precision of about δ sin2 θ̄ � = 1 ×
10−5 [14].
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At Run II of the Tevatron it will be possible to measure the W boson mass with a relative precision of about 2 × 10−4,
which will eventually represent the best measured observable beyond the input parameters of the SM. Proper interpretation
of such an ultra-high precision measurement, either within the SM or beyond, requires the meticulous implementation and
control of higher order radiative corrections. The FORTRAN package GAPP, described here, is specifically designed to meet
this need and to ensure the highest possible degrees of accuracy, reliability, adaptability, and efficiency.

1. PRECISION TESTS

Precision analysis of electroweak interactions follows
three major objectives: high precision tests of the
SM; the determination of its fundamental parameters;
and studies of indications and constraints of possible
new physics beyond the SM, such as supersymmetry
or new gauge bosons. Currently, the experimental
information comes from the very high precision Z
boson measurements at LEP and the SLC, direct mass
measurements and constraints from the Tevatron and
LEP II, and low energy precision experiments, such
as in atomic parity violation, ν scattering, and rare
decays. These measurements are compared with the
predictions of the SM and its extensions. The level of
precision is generally very high. Besides the need for
high-order loop calculations, it is important to utilize
efficient renormalization schemes and scales to ensure
sufficient convergence of the perturbative expansions.

The tasks involved called for the creation of a
special purpose FORTRAN package, GAPP, short
for the Global Analysis of Particle Properties [1].
It is mainly devoted to the calculation of pseudo-
observables, i.e., observables appropriately idealized
from the experimental reality. The reduction of
raw data to pseudo-observables is performed by the
experimenters with available packages (e.g., ZFITTER
for Z pole physics). For cross section and asymmetry
measurements at LEP II (not implemented in the
current version, GAPP 99.7), however, this reduction
is not optimal and convoluted expressions should be
used instead. GAPP attempts to gather all available
theoretical and experimental information; it allows the
addition of extra parameters describing new physics; it
treats all relevant SM inputs as global fit parameters;
and it can easily be updated with new calculations,
data, observables, or fit parameters. For clarity and
speed it avoids numerical integrations throughout. It
is based on the modified minimal subtraction (MS)

scheme which demonstrably avoids large expansion
coefficients.

GAPP is endowed with the option to constrain
nonstandard contributions to the oblique parameters
defined to affect only the gauge boson self-energies [2]
(e.g. S, T , and U); specific anomalous Z couplings; the
number of active neutrinos (with standard couplings to
the Z boson); and the masses, mixings, and coupling
strengths of extra Z bosons appearing in models
of new physics. With view on the importance of
supersymmetric extensions of the SM on one hand, and
upcoming experiments on the other, I also included
the b → sγ transition amplitude, and intend to
add the muon anomalous magnetic moment. In the
latter case, there are theoretical uncertainties from
hadronic contributions which are partially correlated
with the renormalization group (RG) evolutions of the
QED coupling and the weak mixing angle. These
correlations will be partially taken into account by
including heavy quark effects in analytical form; see
Ref. [3] for a first step in this direction. By comparing
this scheme with more conventional ones, it will also be
possible to isolate a QCD sum rule and to rigorously
determine the charm and bottom quark MS masses,
m̂ � and m̂ � , with high precision.

2. GAPP

2.1. Basic structure
In the default running mode of the current version,

GAPP 99.7, a fit is performed to 41 observables, out
of which 26 are from Z pole measurements at LEP
and the SLC. The Fermi constant, G � (from the muon
lifetime), the electromagnetic fine structure constant,
α (from the quantum Hall effect), and the light fermion
masses are treated as fixed inputs. The exception is
m̂ � which strongly affects the RG running1 of α̂(µ)
for µ > m̂ � . I therefore treat m̂ � as a fit parameter

1Quantities defined in the MS scheme are denoted by a caret.
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and include an external constraint with an enhanced
error to absorb hadronic threshold uncertainties of
other quark flavors, as well as theoretical uncertainties
from the application of perturbative QCD at relatively
low energies. Other fit parameters are the Z boson
mass, M � , the Higgs boson mass, M � , the top quark
mass, m � , and the strong coupling constant, α � , so
that there are 37 effective degrees of freedom. Given
current precisions, M � may alternatively be treated as
an additional fixed input.

The file fit.f basically contains a simple call to the
minimization program MINUIT [4] (from the CERN
program library) which is currently used in data driven
mode (see smfit.dat). It in turn calls the core sub-
routine fcn and the χ2-function chi2, both contained
in chi2.f. Subroutine fcn defines constants and flags;
initializes parts of the one-loop package FF [5,6]; and
makes the final call to subroutine values in main.f

which drives the output (written to file smfit.out). In
chi2 the user actively changes and updates the data for
the central values, errors, and correlation coefficients
of the observables, and includes or excludes individual
contributions to χ2 (right after the initialization, chi2
= 0.d0). To each observable (as defined at the
beginning of chi2) corresponds an entry in each of
the fields value, error, smval, and pull, containing
the central observed value, the total (experimental and
theoretical) error, the calculated fit value, and the
standard deviation, respectively. The function chi2

also contains calls to various other subroutines where
the actual observable calculations take place. These
are detailed in the following subsections.

Another entry to GAPP is provided through mh.f

which computes the probability distribution function
of M � . The probability distribution function is the
quantity of interest within Bayesian data analysis (as
opposed to point estimates frequently used in the con-
text of classical methods), and defined as the product
of a prior density and the likelihood, L ∼ exp(−χ2/2).
If one chooses to disregard any further information on
M � (such as from triviality considerations or direct
searches) one needs a non-informative prior. It is
recommended to choose a flat prior in a variable
defined on the whole real axis, which in the case of
M � is achieved by an equidistant scan over logM � .
An informative prior is obtained by activating one of
the approximate Higgs exclusion curves from LEP II
near the end of chi2.f. These curves affect values
of M � even larger than the corresponding quoted
95% CL lower limit and includes an extrapolation to
the kinematic limit; notice that this corresponds to a
conservative treatment of the upper M � limit.

Contour plots can be obtained using the routine
mncontours from MINUIT. For the cases this fails,

some simpler and slower but more robust contour
programs are also included in GAPP, but these have
to be adapted by the user to the case at hand.

2.2. α̂, sin2 θ̂ � , M �

At the core of present day electroweak analyses is
the interdependence between G � , M � , the W boson
mass, M � , and the weak mixing angle, sin2 θ � . In
the MS scheme it can be written as [7,8],

ŝ2 =
A2

M2� (1−∆r̂ � )
, ŝ2ĉ2 =

A2

M2� (1−∆r̂ � )
, (1)

where,

A =

[
πα√
2G �

]1
�
2

= 37.2805(2) GeV, (2)

ŝ2 is the MS mixing angle, ĉ2 = 1− ŝ2, and where,

∆r̂ � =
α

π
∆̂ � +

Π̂ � � (M2� )− Π̂ � � (0)

M2�
+ V + B, (3)

and,

∆r̂ � = ∆r̂ � + (1−∆r̂ � )
Π̂ � � (M2� )− Π̂WW ( � 2

W )�̂
2

M2�
, (4)

collect the radiative corrections
computed in sin2th.f. The Π̂ indicate MS subtracted
self-energies, and V + B denote the vertex and box
contributions to µ decay. Although these relations
involve the MS gauge couplings they employ on-shell
gauge boson masses, absorbing a large class of radiative
corrections [9].

∆r̂ � and ∆r̂ � are both dominated by the contribu-
tion ∆̂ � (M � ) which is familiar from the RG running
of the electromagnetic coupling,

α̂(µ) =
α

1− �

� ∆̂ � (µ)
, (5)

and computed in alfahat.f up to four-loop O(αα3
� ).

Contributions from c and b quarks are calculated using
an unsubtracted dispersion relation [3]. If µ is equal to
the mass of a quark, three-loop matching is performed
and the definition of α̂ changes accordingly. Pure QED
effects are included up to next-to-leading order (NLO)
while higher orders are negligible. Precise results can
be obtained for µ < 2m � and µ ≥ m � .

Besides full one-loop electroweak corrections, ∆r̂ �

and ∆r̂ � include enhanced two-loop contributions
of O(α2m4

� ) [10] (implemented using the ana-
lytic expressions of Ref. [11]) and O(α2m2

� ) [12]
(available as expansions in small and large M � );
mixed electroweak/QCD corrections of O(αα � ) [13]
and O(αα2

� m2
� ) [14]; the analogous mixed elec-

troweak/QED corrections of O(α2); and fermion mass
corrections also including the leading gluonic and
photonic corrections.
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2.3. Z decay widths and asymmetries
The partial width for Z → f f̄ decays is given by,

Γ � ¯� =
N

�
� M � α̂

24ŝ2ĉ2
|ρ̂ � |

[
1− 4|Q � |Re(κ̂ � )ŝ2 + 8Q2� ŝ4|κ̂ � |2

]

×
[
1 + δQED + δNS

QCD + δS
QCD −

α̂α̂ �

4π2
Q2� +O(m2� )

]
. (6)

N
�

� is the color factor, Q � is the fermion charge,
and ρ̂ � and κ̂ � are form factors which differ from
unity through one-loop electroweak corrections [15]
and are computed in rho.f and kappa.f, respectively.
For f 6= b there are no corrections of O(α2m4

� ) and
contributions of O(α2m2

� ) to κ̂ � [16] and ρ̂ � [9] are
very small and presently neglected. On the other hand,
vertex corrections of O(αα � ) [17] are important and
shift the extracted α � by ∼ 0.0007.

The Z → bb̄ vertex receives extra corrections due
to heavy top quark loops. They are large and have
been implemented in bvertex.f based on Ref. [18].
O(α2m4

� ) corrections [10,11] are included, as well, while
those of O(α2m2

� ) are presently unknown. The leading
QCD effects of O(αα � m2

� ) [19] and all subleading
O(αα � ) corrections [20] are incorporated into ρ̂ � and
κ̂ � , but not the O(αα2

� m2
� ) contribution which is

presently available only for nonsinglet diagrams [21].
In Eq. (6), δQED are the O(α) and O(α2) QED

corrections. δNS
QCD are the universal QCD corrections

up to O(α3
� ) which include quark mass dependent con-

tributions due to double-bubble type diagrams [22,23].
δS
QCD are the singlet contributions to the axial-vector

and vector partial widths which start, respectively, at
O(α2

� ) and O(α3
� ), and induce relatively large family

universal but flavor non-universal m � effects [23,24].
The corrections appearing in the second line of Eq. (6)
are evaluated in lep100.f.

The dominant massless contribution to δNS
QCD can

be obtained by analytical continuation of the Adler
D-function, which (in the MS scheme) has a very well
behaved perturbative expansion ∼ 1 +

∑
� =0 d � a

� +1
� in

a � = α̂ � (M � )/π (see the Appendix for details). The
process of analytical continuation from the Euclidean
to the physical region induces further terms which
are proportional to β-function coefficients, enhanced
by powers of π2, and start at O(α3

� ). Fortunately,
these terms [25] involve only known coefficients up to
O(α5

� ), and the only unknown coefficient in O(α6
� ) is

proportional to the four-loop Adler function coefficient,
d3. In the massless approximation,

δNS
QCD ≈ a � + 1.4092a2

� − (0.681 + 12.086) a3
� +

(d3 − 89.19) a4
� + (d4 + 79.7) a5

� +

(d5 − 121d3 + 3316) a6
� , (7)

and terms of order a7
� ∼ 10−10 are clearly negligible.

Notice, that the O(α6
� ) term effectively reduces the

sensitivity to d3 by about 18%. Eq. (7) amounts to a
reorganization of the perturbative series in terms of the
d � times some function of α � ; a similar idea is routinely
applied to the perturbative QCD contribution to τ
decays [26].

Final state fermion mass effects [22,27] of O(m2� )

(and O(m4� ) for b quarks) are best evaluated by
expanding in m̂2� (M � ) thus avoiding large logarithms
in the quark masses. The singlet contribution of
O(α2

� m2� ) is also included.
The dominant theoretical uncertainty in the Z line-

shape determination of α � originates from the massless
quark contribution, and amounts to about ±0.0004
as estimated in the Appendix. There are several
further uncertainties, all of O(10−4): from the O(α4

� )
heavy top quark contribution to the axial-vector part
of δS

QCD; from the missing O(αα2
� m2

� ) and O(α2m2
� )

contributions to the Zbb̄-vertex; from further non-
enhanced but cohering O(αα2

� )-vertex corrections; and
from possible contributions of non-perturbative origin.
The total theory uncertainty is therefore,

∆α � (M � ) = ±0.0005, (8)

which can be neglected compared to the current ex-
perimental error. If m̂ � is kept fixed in a fit, then its
parametric error would add an uncertainty of ±0.0002,
but this would not change the total uncertainty (8).

Polarization asymmetries are (in some cases up to
a trivial factor 3/4 or a sign) given by the asymmetry
parameters,

A � =
1− 4|Q � |Re(κ̂ � )ŝ2

1− 4|Q � |Re(κ̂ � )ŝ2 + 8Q2� ŝ4|κ̂ � |2 , (9)

and the forward-backward asymmetries by,

A � � (f) =
3

4
A � A � . (10)

The hadronic charge asymmetry, Q � � , is the linear
combination,

Q � � =
∑

� =
�

� � �
�
R � A � � (q)−

∑
� = � �

�
R � A � � (q),

(11)

and the hadronic peak cross section, σhad, is stored in
sigmah, and defined by,

σhad =
12πΓ � + � −Γhad

M2� Γ2�
. (12)

Widths and asymmetries are stored in the fields
gamma(f), alr(f), and afb(f). The fermion index,
f, and the partial width ratios, R(f), are defined in
Table 1.
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Table 1
Some of the variables used in lep100.f. Γinv and
Γhad are the invisible and hadronic decays widths,
respectively.

0 ν gamma(0) = Γinv alr(0) = 1
1 e R(1) = Γhad/Γ � + � − alr(1) = A �

2 µ R(2) = Γhad/Γ � + � − alr(2) = A �

3 τ R(3) = Γhad/Γ � + � − alr(3) = A �

4 u R(4) = Γ � ¯� /Γhad —
5 c R(5) = Γ � �̄ /Γhad alr(5) = A �

6 t R(6) = 0 —
7 d R(7) = Γ � ¯� /Γhad —
8 s R(8) = Γ � �̄ /Γhad alr(8) = A �

9 b R(9) = Γ � �̄ /Γhad alr(9) = A �

10 had gamma(10) = Γhad afb(10) = Q � �

11 all gamma(11) = Γ � —

2.4. Fermion masses
I use MS masses as far as QCD is concerned,

but retain on-shell masses for QED since renormalon
effects are unimportant in this case. This results in
a hybrid definition for quarks. Accordingly, the RG
running of the masses to scales µ 6= m̂ � uses pure
QCD anomalous dimensions. The running masses
correspond to the functions msrun(µ), mcrun(µ), etc.
which are calculated in masses.f to three-loop order.
Anomalous dimensions are also available at four-loop
order [28], but can safely be neglected. Also needed
is the RG evolution of α � which is implemented to
four-loop precision [29] in alfas.f.

I avoid pole masses for the five light quarks through-
out. Due to renormalon effects, these can be deter-
mined only up to O(ΛQCD) and would therefore induce
an irreducible uncertainty of about 0.5 GeV. In fact,
perturbative expansions involving the pole mass show
unsatisfactory convergence. In contrast, the MS mass
is a short distance mass which can, in principle, be
determined to arbitrary precision, and perturbative
expansions are well behaved with coefficients of order
unity (times group theoretical factors which grow only
geometrically). Note, however, that the coefficients of
expansions involving large powers of the mass, m̂

�
, are

rather expected to be of O(n). This applies, e.g., to
decays of heavy quarks (n = 5) and to higher orders in
light quark mass expansions.

The top quark pole mass enters the analysis
when the results on m � from on-shell produced top
quarks at the Tevatron are included. In subroutine
polemasses(nf,mpole) m̂ � (m̂ � ) is converted to the
quark pole mass, mpole, using the two-loop pertur-
bative relation from Ref. [30]. The exact three-loop
result [31] has been approximated (for m � ) by em-

ploying the BLM [32] scale for the conversion. Since
the pole mass is involved it is not surprising that
the coefficients are growing rapidly. The third order
contribution is 31%, 75%, and 145% of the second
order for m � (nf = 6), m � (nf = 5), and m � (nf = 4),
respectively. I take the three-loop contribution to
the top quark pole mass of about 0.5 GeV as the
theoretical uncertainty, but this is currently negligible
relative to the experimental error. At a high energy
lepton collider it will be possible to extract the MS
top quark mass directly and to abandon quark pole
masses altogether.

2.5. ν scattering
The ratios of neutral-to-charged current cross sec-

tions,

R � =
σ

� �

� �

σ
� �

� �
, R¯� =

σ
� �

¯�
�

σ
� �

¯�
�
, (13)

have been measured precisely in deep inelastic ν
(ν̄) hadron scattering (DIS) at CERN (CDHS and
CHARM) and Fermilab (CCFR). The most precise
result was obtained by the NuTeV Collaboration at
Fermilab who determined the Paschos-Wolfenstein ra-
tio,

R− =
σ

� �

� � − σ
� �

¯�
�

σ
� �

� � − σ
� �

¯�
�
∼ R � − rR¯� , (14)

with r = σ
� �

¯�
� /σ

� �

� � . Results on R � are frequently
quoted in terms of the on-shell weak mixing angle
(or M � ) as this incidentally gives a fair description
of the dependences on m � and M � . One can write
approximately,

R � = g2� + g2� r, R¯� = g2� +
g2�

r
, R− = g2� − g2� , (15)

where,

g2� =
1

2
− sin2 θ � +

5

9
sin4 θ � , g2� =

5

9
sin4 θ � . (16)

However, the study of new physics requires the
implementation of the actual linear combinations
of effective four-Fermi operator coefficients, ε �

�
� (u)

and ε �
�

� (d), which have been measured. With
the appropriate value for the average momentum
transfer, q2, as input, these are computed in the
subroutines nuh(q2,epsu L,epsd L,epsu R,epsd R)

(according to Ref. [33]), nuhnutev, nuhccfr, and
nuhcdhs, all contained in file dis.f. Note, that
the CHARM results have been adjusted to CDHS
conditions [34]. While the experimental correlations
between the various DIS experiments are believed to
be negligible, large correlations are introduced by the
physics model through charm mass threshold effects,
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quark sea effects, radiative corrections, etc. I con-
structed the matrix of correlation coefficients using the
analysis in Ref. [34],

R− R � R � R � R¯� R¯� R¯�




1.00 0.10 0.10 0.10 0.00 0.00 0.00
0.10 1.00 0.40 0.40 0.10 0.10 0.10
0.10 0.40 1.00 0.40 0.10 0.10 0.10
0.10 0.40 0.40 1.00 0.10 0.10 0.10
0.00 0.10 0.10 0.10 1.00 0.15 0.15
0.00 0.10 0.10 0.10 0.15 1.00 0.15
0.00 0.10 0.10 0.10 0.15 0.15 1.00




. (17)

The effective vector and axial-vector couplings, g
� �

�

and g
� �

� , from elastic νe scattering are calculated
in subroutine nue(q2,gvnue,ganue) in file nue.f.
The momentum transfer, q2, is currently set to
zero [36]. Needed is the low energy ρ parameter,
rhonc, which describes radiative corrections to the
neutral-to-charged current interaction strengths. To-
gether with sin2t0 (described below) it is computed
in file lowenergy.f.

2.6. Low energy observables
The weak atomic charge, Qw, from atomic parity

violation and fixed target ep scattering is computed
in subroutine apv(Qw,Z,AA,C1u,C1d,C2u,C2d) where
Z and AA are, respectively, the atomic number and
weight. Also returned are the coefficients from lepton-
quark effective four-Fermi interactions which are cal-
culated according to [37].

These observables are sensitive to the low energy
mixing angle, sin2t0, which defines the electroweak
counterpart to the fine structure constant and is similar
to the one introduced in Ref. [7]. There is significant
correlation between the hadronic uncertainties from
the RG evolutions of α̂ and the weak mixing angle.
Presently, this correlation is ignored, but with the
recent progress in atomic parity violation experiments
it should be accounted for in the future.

An additional source of hadronic uncertainty is in-
troduced by γZ-box diagrams which are unsuppressed
at low energies. At present, this uncertainty can be
neglected relative to the experimental precision.

Besides apv, the file pnc.f contains in addition
the subroutine moller for the anticipated polarized
fixed target Møller scattering experiment at SLAC.
Radiative corrections are included following Ref. [38].

2.7. b→ sγ
Subroutine bsgamma returns the decay ratio,

R =
B(b→ sγ)

B(b→ ceν)
. (18)

It is given by [39,40],

R =
6α

π

∣∣∣∣
V ∗� � V � �

V � �

∣∣∣∣
2

S

f(z)

|D̄|2 +A/S + δ � � + δ � �

(1 + δ � �

� � )(1 + δ � �

� � )
, (19)

where |V ∗� � V � � /V � � |2 = 0.950 is a combination of
Cabbibo-Kobayashi-Maskawa matrix elements and S
is the Sudakov factor [41]. δ � � and δ � � are non-
perturbative and NLO electroweak [42] corrections,
both for the b → sγ and the semileptonic (b → ceν)
decay rates.

D̄ = C0
7 +

α̂ � (m̂ � )

4π
(C1

7 + V ), (20)

is called the reduced amplitude for the process b→ sγ,
and is given in terms of the Wilson coefficient C7 at
NLO. C7 and the other C � appearing below are effective
Wilson coefficients with NLO RG evolution [43] from
the weak scale to µ = m̂ � understood. The NLO
matching conditions at the weak scale have been
calculated in Ref. [44]. D̄ includes the virtual gluon
corrections,

V = r2C
0
2 + r7C

0
7 + r8C

0
8 , (21)

so that it squares to a positive definite branching
fraction. On the other hand, the amplitude for gluon
Bremsstrahlung (b→ sγg),

A = ˆ� s( ˆ�
b)

� [C0
2 (C0

8f28(1) + C0
7f27(1) + C0

2f22(1))+

C0
8 (C0

8f88(δ) + C0
7f78(δ)) + (C0

7 )2f77(δ)],
(22)

is added linearly to the cross section. The Wilson
coefficient C0

2 is defined as in Ref. [45]. It enters only
at NLO, is significantly larger than C0

7 , and dominates
the NLO contributions. The parameter 0 ≤ δ ≤ 1 in
the coefficient functions f � � characterizes the minimum
photon energy and has been set to δ = 0.9 [41],
except for the first line in Eq. (22) where δ = 1.0
corresponding to the full cross section. The f2 � are
complicated integrals which can be solved in terms of
polylogarithms up to 5th order. In the code I use
an expansion in z = m2� /m2� and δ = 1.0. Once
experiments become more precise the correction to
δ = 0.9 should be included.
f(z) is the phase space factor for the semileptonic

decay rate including NLO corrections [46]. I defined
the MS mass ratio in z = [m̂ � (m̂ � )/m̂ � (m̂ � )]2 at the
common scale, µ = m̂ � , which I also assumed for the
factor m̂5� multiplying the decay widths. Since I do not
re-expand the denominator this effects the phase space
function at higher orders. Using the O(α2

� )-estimate2

2I computed the O(α2
s) coefficient for comparison only, and did

not include it in the code.
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from Ref. [47], I obtain for the semileptonic decay
width,

Γ � � ∼ m̂5� f0(z)

[
1 + 2.7

α̂ � (m̂ � )

π
− 1.6

(
α̂ �

π

)2
]
, (23)

where f0(z) is the leading order phase space factor. It
is amusing that the coefficients in Eq. (23) are com-
fortably (and perhaps somewhat fortuitously) small,
with the O(a2

� )-coefficient even smaller than the one
in Ref. [47] where a low scale running mass had been
advocated. Moreover, using the pre-factor m̂5� in the
numerator of R reduces the size of r7 in Eq. (21) and
therefore the coefficient κ(δ) = f77(δ) + r7/2 which

multiplies the term a � (C0 � eff
7 )2. I obtain −2.1 < κ(δ) <

1.4, while with the pole mass pre-factor M 5� one would
have −8.7 ≤ κ(δ) < −5.3.
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A. Uncertainties from perturbative QCD

Writing the perturbative expansion of some quantity
in its general form for an arbitrary gauge group, it can
easily be decomposed into separately gauge invariant
parts. Table 2 shows for some (related) examples that
after removing the group theoretical pre-factors, all
coefficients, y � , are strictly of order unity, and that
their mean, ȳ, is very close to zero. In particular,
there is no sign of factorial growth of coefficients.
These observations offer a valuable tool to estimate
the uncertainties associated with the truncation of the
loop expansion, so I would like to make them more
precise.

Assume (for simplicity) that the y � are random draws
from some normal distribution with unknown mean,
µ, and variance, σ2. One can show that the marginal
distribution of µ follows a Student-t distribution with
n− 1 degrees of freedom, t � −1, centered about ȳ, and
with standard deviation,

∆µ =

√∑
� (y � − ȳ)2

n(n− 3)
. (24)

As can be seen from the Table, µ is consistent with zero
in all cases, justifying the nullification of the unknown
coefficients from higher loops. I next assert that the
distribution of σ, conditional on µ = 0, follows a scaled
inverse-χ2 distribution with n degrees of freedom, from

which I obtain the estimate,

σ = σ0 ±∆σ =

√∑
� y2�

n− 2

[
1±

√
1

2(n− 4)

]
. (25)

Inspection of the Table shows indeed that σ, as the
typical size of a coefficient, is estimated to be

�
∼ O(1).

I now focus on the partial hadronic Z decay width.
As discussed in Section 2.3, the O(α3

� ) term, d2, is
much smaller than the π2 term arising from analytical
continuation. This is specifically true for the relevant
case of n � = 5 active flavors, where large cancellations
occur between gluonic and fermionic loops. Notice,
that the D-function, in contrast to Rhad, has opposite
signs in the leading terms proportional to C2

� C � and
C � C � T � n � . Indeed, the Adler D-function and the
β-function have similar structures regarding the signs
and sizes of the various terms (see Table 2), and we
do expect large cancellations in the β-function. The
reason is that it has to vanish identically in the case of
N = 4 supersymmetry. Ignoring scalar contributions
this case can be mimicked by setting T � n � = 2C �

(there are 2 Dirac fermions in the N = 4 gauge
multiplet) or n � = 12 for QCD, which is of the right
order. In fact, all known QCD β-function coefficients
become very small for some value of n � between 6 and
16. We therefore have a reason to expect that similar
cancellations will reoccur in the d � at higher orders. As
a 1σ error estimate for d3, I suggest to use the largest
known coefficient (3 × 0.71) times the largest group
theoretical pre-factor in the next order (C3

� C � ) which
results in

d3 = 0± 77. (26)

With Eq. (7) and α̂ � (M � ) = 0.120 one can absorb all
higher order effects into the O(α4

� )-coefficient of Rhad,
reff
3 = −81 ± 63. This shifts the extracted α � from

the Z line-shape by +0.0005 and introduces the small
uncertainty of ±0.0004.

The argument given above does certainly not apply
to the quenched case, n � = 0, and indeed d2(n � = 0) is
about −73% of the π2 term, i.e., large and positive. In
the case of n � = 3, which is of interest for the precision
determination of α � from τ decays, d2 is about −38%
of the π2 term. If one assumes that the same is true
of d3, one would obtain d3(n � = 3) = 60. Estimates
based on the principles of minimal sensitivity, PMS,
or fastest apparent convergence, FAC, yield d3(n � =
3) = 27.5 [25] so there might be some indications for a
positive d3(n � = 3). In any case, all these estimates lie
within the uncertainty in Eq. (26) and we will have to
await the proper calculation of the O(α4

� )-coefficient to
test these hypotheses. Note, that the current τ decay
analysis by the ALEPH Collaboration uses d3 = 50±
50 [50] which is more optimistic.
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The analogous error estimate for the five-loop β-
function coefficient yields,

β4 = 0± 579. (27)

To get an estimate for the uncertainty in the RG
running of α̂ � , I translate Eq. (27) into

β3 = β3 ±
α̂ � (µ0)

π
β4, (28)

where µ0 is taken to be the lowest scale in-
volved. This overestimates the uncertainty from β4,
thereby compensating for other neglected terms of
O(α

� +4
� ln

�
µ2/µ2

0). For the RG evolution from µ = m �

to µ = M � this yields an uncertainty of ∆α � (M � ) =
±0.0005. Conversely, for fixed α � (M � ) = 0.120, I
obtain α̂ � (m̂ � ) = 0.2313± 0.0006, α̂ � (m � ) = 0.3355±
0.0045, and α̂ � (m̂ � ) = 0.403±0.011, where I have used
m̂ � = 4.24 GeV and m̂ � = 1.31 GeV. For comparison,
the ALEPH Collaboration quotes an evolution error
of ∆α � (M � ) = ±0.0010 which is twice as large. I
emphasize that it is important to adhere to consistent
standards when errors are estimated. This is especially
true in the context of a global analysis where the
precisions of the observables enter as their relative
weights.
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Table 2
Coefficients (MS ) appearing in the β-function of a
simple group [29]; in non-Abelian corrections to the
QED β-function (denoted D̃) [3,48]; in the Adler
D-function [49] (rescaled by an overall factor 1/3);
and in Rhad (analytical continuation of D). The first
four segments correspond, respectively, to the first four
loop orders of non-singlet type. The fifth segment is
the singlet (double triangle) contribution in O(α3

� ). In
D̃, D, and Rhad, an overall factor α̂M � and the sums
involving charges or Z couplings have been dropped.
The completely symmetrical tensors of rank four, d �

and d � , as well as T � when appearing in parenthesis,
apply to the β-function only. Each T � is understood to
be multiplied by the number of flavors, n � , except for
the singlet term involving the symmetrical structure
constants, d.

group factor β D̃ D Rhad

C � 0.92 — — —
(T � ) −0.33 −0.33 0.33 0.33
C2

� 0.71 — — —
C � T � −0.42 — — —
C � (T � ) −0.25 −0.25 0.25 0.25
C3

� 0.83 — — —
C2

� T � −0.82 — — —
C � C � (T � ) −0.36 −0.23 0.18 0.18
C � T 2

� 0.09 — — —
C2

� (T � ) 0.03 0.03 −0.03 −0.03
C � T � (T � ) 0.08 0.08 −0.06 −0.06
C4

� 1.19 — — —
C3

� T � −1.67 — — —
C2

� C � (T � ) −0.23 −0.28 0.32 −0.38
C2

� T 2� 0.50 — — —
C � C2

� (T � ) −0.42 −0.07 0.51 0.51
C � C � T � (T � ) 0.51 0.42 −0.71 −0.21
C � T 3

� 0.01 — — —
C3

� (T � ) 0.18 0.18 −0.18 −0.18
C2

� T � (T � ) −0.17 −0.17 0.02 0.02
C � T 2

� (T � ) 0.02 0.02 0.09 −0.01
d2

� /N � 1.07 — — —
d � d � /N � −2.38 — — —
d2� /N � (T 2� d2/4) 0.50 0.50 −0.50 −0.50

ȳ −0.02 −0.01 0.02 −0.01
∆µ 0.17 0.09 0.11 0.09
σ0 0.83 0.28 0.37 0.31
∆σ 0.13 0.07 0.09 0.08
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This report discusses physics issues which can be addressed in photon and weak boson production in Run II at the Tevatron.
The current understanding and the potential of Run II to expand our knowledge of direct photon production in hadronic
collisions is discussed. We explore the prospects for using the W -boson cross section to measure the integrated luminosity,
improving the measurement of the W and Z boson transverse momentum distributions, the Z → bb̄ signal, and the lepton
angular distribution in W decays. Finally, we consider the prospects for measuring the trilinear gauge boson couplings in
Run II.

1. Introduction

For the next few years, the Fermilab Tevatron Col-
lider will be the high energy frontier of particle physics.
The luminosity enhancement provided by the Main In-
jector will significantly increase the discovery reach of
the Tevatron experiments over what has been achieved
with Run I data. It will also move the experimen-
tal program into a regime of precision hadron collider
physics. This will make it possible to address open
questions of high energy physics from several comple-
mentary directions.

Understanding the mechanism of production for
photons, W , and Z-bosons is important for several rea-
sons. First of all, it provides an opportunity to directly
test the Standard Model (SM). Second, photon and
weak boson production often constitute an irreducible
background in searches for new physics. Finally, a de-
tailed understanding of the production mechanism for
these particles is necessary to control the systematic
errors in precision measurements, such as the determi-
nation of the W mass (see Ref. [1]).

In this report, we consider several aspects of the
production of photons, W , and Z bosons which are
of interest for Run II of the Tevatron Collider. In
Sec. 2, direct photon production is discussed. A de-
tailed overview of our current experimental and the-
oretical understanding of direct photon production in
hadronic collisions is presented. Direct photon pro-
duction has long been considered a probe of QCD and
a source for extracting the gluon distribution of the
proton. Unfortunately, not all existing (fixed target
and Tevatron collider) datasets are consistent, and
our current theoretical understanding of direct pho-
ton production, especially at small photon transverse

momenta, is incomplete. Recent theoretical develop-
ments, however, offer optimism that the long-standing
difficulties in direct photon production can finally be
resolved. The enormous number of photon-jet events
expected in Run II may help to shed light on these
issues. In particular, photon – jet correlations should
be helpful in sorting out the source of disagreement
between theory and experiment. In addition, the kine-
matic reach in transverse momentum will be greatly
extended in Run II.

In Sec. 3 several important topics associated with
W and Z-boson production are discussed. For many
measurements in Run II, knowledge of the integrated
luminosity is essential. The integrated luminosity can
be extracted either from the total inelastic cross section
or from the cross section of a theoretically well under-
stood process with high statistics, such as inclusive W
production. Using the total inelastic cross section to
determine the integrated luminosity for Run I has led
to inconsistencies which may well persist in Run II. It
may thus be advantageous to use the W production
cross section as an alternative. In Sec. 3.1 we present
a brief overview of the magnitude of the experimen-
tal uncertainties in such a measurement. The total
uncertainty in the W cross section is found to be dom-
inated by the uncertainty from the parton distribution
functions, which is considered in more detail in the
Report of the Working Group on Parton Distribution
Functions [2].

In Sec. 3, we also consider the transverse momentum
distribution of the Z boson, Z → bb̄ decays, and the
prospects to measure the lepton angular distribution
in W decays. The Z p � distribution is of interest as a
test of QCD, and as a tool for reducing uncertainties in
the transverse momentum distribution of the W . This
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is important for a precise determination of the mass of
the W boson (see Ref. [1]). Searching for a light Higgs
boson in the range between 110 GeV and 180 GeV is
one of the prime objectives for Run II. H → bb̄ decays
dominate for Higgs boson masses M � < 135 GeV. The
ability to separate the Higgs boson signal in the Wbb̄
and tt̄bb̄ channels from the large QCD background de-
pends critically on on the bb̄ invariant mass resolution,
and thus on the measured b-quark jet energies. Z → bb̄
decays offer a testing ground for algorithms designed
to improve the jet energy measurement for b jets and
are also useful as a calibration tool. The measurement
of the lepton angular distributions in W decays serves
as a probe of NLO QCD. The measurement carried
out by DØ in Run I is statistics limited. While a QCD
calculation is preferred, large deviations from QCD are
not excluded. In Run II, this measurement will allow
for a much improved test of the QCD prediction.

In Sec. 4 of this report, we discuss di-boson produc-
tion. Vector boson pair production provides a sensitive
ground for direct tests of the trilinear gauge boson
couplings. A brief overview of the WWV (V = γ, Z),
ZγV and ZZV couplings is presented and recent ad-
vances in our theoretical understanding of the NLO
QCD corrections to di-boson production are described.
After a brief review of the limits on trilinear couplings
obtained in Run I, the prospects for strengthening ex-
isting bounds in Run II are discussed. In addition
to improving the measurements of WWV and ZγV
couplings, it will be possible to determine the ZZV
couplings via ZZ production with an accuracy of about
15% in Run II, and to observe the so-called “radiation
zero” in Wγ production.

2. Direct Photon Production

The use of direct photon production as an elec-
tromagnetic probe of hard scattering dynamics has
a history which covers more than twenty years. As
in other electromagnetic processes such as lepton pair
production or deep inelastic scattering, the point-like
coupling of the photon to charged particles offers some
simplifications over purely hadronic probes. Compared
to hadronic jet production, direct photon production
offers the apparent advantages of having fewer subpro-
cesses at lowest order and of avoiding the complications
of jet definitions when measuring or calculating a cross
section. This latter point means that one can extend
the range of transverse momenta to smaller values
for direct photons than for jets. However, in actual
practice, these apparent simplifications must be tem-
pered by having to deal with backgrounds from neu-
tral meson decays, a lower event rate compared to jet
production, and complications from photons produced

during jet fragmentation, to name just a few. Never-
theless, direct photon data provide information which
complements that obtained from other hard scattering
processes. Furthermore, photons may be important
signatures of physics beyond the SM. Therefore, it is
necessary to understand the “conventional” sources of
photons before one can fully exploit them in signatures
designed to look for new physics.

In this Section, recent work concerning the phe-
nomenology of initial-state gluon emission in direct-
photon production in hadron collisions is reported. In
Sec. 2.1, high-mass direct-photon pairs are used to ex-
plore the impact of such radiation in terms of effective
parton transverse momenta, k � . At fixed-target ener-
gies, data on high-p

T
inclusive π0 and π0π0 production

are used to further clarify the arguments presented.
We then review progress towards fully resummed QCD
descriptions and present comparisons of a phenomeno-
logical k � model to recent fixed-target and collider
data. Possibilities for more extensive studies with
data from Run II, and the additional information they
can provide for these considerations, are explored in
Sec. 2.1.5. A consistent picture of the observed de-
viations of NLO perturbative QCD (pQCD) calcula-
tions from inclusive direct-photon and π0 data is now
emerging, and we comment on the implications of these
results for the extraction of the gluon distribution,
G(x), in Sec. 2.1.6.

Run II has the potential to significantly expand our
knowledge of direct photon production. Issues related
to our understanding of the relevant production mech-
anisms in the kinematic range accessible during Run II
are reviewed in Sec. 2.2. In this Section, we also discuss
observables which may help improve our understanding
of direct photon production as well as experimental
issues which can affect the quality of the data. In
Sec. 2.2.4 some predictions for photon-jet correlations
are presented. The potential of observables other than
the usual single photon p � distribution to help eluci-
date the underlying dynamics is discussed.

Run I data are available on the associated produc-
tion of a γ carrying large transverse momentum along
with a charm quark c whose transverse momentum
balances a substantial portion of that of the photon [3].
An intriguing possibility is that the data may be used
to measure the charm quark density in the nucleon as
well as to probe dynamical correlations predicted by
QCD. These possibilities are discussed in Ref. [4] where
predictions are obtained from a full next-to-leading or-
der perturbative QCD calculation of p+ p̄→ γ+ c+X
at high energy. The associated production of a pho-
ton and a heavy quark is not discussed further in this
report.
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2.1. Present Status of Direct Photon Produc-
tion in Hadronic Collisions1

2.1.1. Introduction
Single and double direct-photon production at high

p
T

have long been viewed as ideal processes for testing
the formalisms of pQCD. NLO calculations are avail-
able for both processes [5–9]. While the importance
of including gluon emission through the resummation
formalism was recognized and available for some time
for the di-photon process [10,11], it is only recently
that this approach has been developed for inclusive
direct-photon production [12–17]. A complete theo-
retical description of the direct-photon process is of
special importance as it has long been expected to
provide one of the best measurements of the gluon
distribution in the proton. The quark–gluon Compton
scattering subprocess (gq → γq) shown in Fig. 1 pro-
vides a major contribution to inclusive direct-photon
production. The gluon distribution (G(x)) is rela-
tively well constrained for x < 0.1 by deep-inelastic
scattering (DIS) and Drell-Yan (DY) data, but less so
at larger x [18]. Fixed-target direct-photon data can
constrain G(x) at large x, and consequently has been
incorporated in several modern global parton distribu-
tion analyses [19–21]. More recently, however, both
the completeness of the theoretical NLO description of
the direct-photon process, and the consistency of the
available data sets have been the subject of intense de-
bate [21–27]. Direct-photon measurements in collider

q

q
_

γ

g

q

g

γ

q
Annihilation Compton Scattering

Figure 1. Leading order diagrams for direct-photon
production.

data, and especially the data expected from the forth-
coming Run II at the Tevatron, provide an important
testing ground for novel approaches and improvements
in the understanding of the direct-photon process, and
therefore can help resolve the present arguments.

The understanding of single and double direct pho-
ton yields, and of the more copious high-p

T
π0 produc-

tion, is of importance for searches for the Higgs in the

1 Contributed by: L. Apanasevich, M. Begel, Y. Ger-
shtein, J. Huston, S. E. Kuhlmann, D. Partos, J. Womersley,
M. Zieliński, and V. Zutshi.
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Figure 2. Comparison between proton-induced direct-
photon data and NLO pQCD calculations for several
experiments as a function of photon x � (= 2p � /

√
s).

(The CDF and D 6O data are from Run Ia, see Figs. 23
and 24 for the Run Ib update.)

γγ decay mode at the LHC. In addition, Higgs pro-
duction, both at the Tevatron and the LHC, can be af-
fected by soft-gluon emission from the initial-state par-
tons, and separation of signal and background can ben-
efit from a reliable resummation formalism or equiva-
lent parton-shower Monte Carlo descriptions [28–30].

2.1.2. Parton Transverse Momentum
A pattern of deviation has been observed between

measured direct-photon cross sections and NLO calcu-
lations (Fig. 2). The origin of the disagreement has
been ascribed to the effect of initial-state soft-gluon
radiation [23,24]. Correlations between any produced
high-p

T
particles probe aspects of the hard scatter not

easily accessible via studies of single inclusive particle
production. In particular, studies of high-mass pairs of
particles such as direct photons and π0’s can be used to
extract information about the transverse momentum of
partons, k

T
, prior to the hard scatter. Whatever the

source, any transverse momentum between the partons
will appear as a net p

T
imbalance among the outgoing

particles produced in the hard scatter, and is there-
fore reflected in the vector sum of the individual p

T

values of the outgoing particles (Q
T
). If the outgo-

ing particles are pairs of photons or leptons, then this
variable should provide a good measure of 〈k

T
〉, with

〈k
T
〉/parton ≈ 〈Q

T
〉/
√

2. When the outgoing particles

118



0

1

2

3

4

5

6

7

10 10
2

10
3

√s
−
 (GeV)

<Q
T
> 

(G
eV

/c
)

Diphoton

Dimuon

Dijet

Proton Data

0

1

2

10 √s
−
 (GeV)

Pion Data

Figure 3. 〈Q
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produced in hadronic collisions versus
√
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are partons, they will hadronize, but the reconstructed
jets can also yield a measure of 〈k

T
〉.

Evidence of significant k
T

has been found in several
measurements of dimuon, diphoton, and dijet produc-
tion; a collection of 〈Q

T
〉 measurements is displayed in

Fig. 3 for a wide range of
√
s [31–35]. The values of

〈Q
T
〉 are large, and increase with increasing

√
s. The

dijet k
T

measurements (Fig. 3) agree qualitatively with
the dimuon and diphoton results, though they have
somewhat higher mean values. Such a shift is expected
since there is also potential for final-state soft-gluon
emission in dijet events. The values of 〈k

T
〉 per parton

indicated by these data are too large to be interpreted
as due only to the size of the proton. From these
observations, one can infer that the 〈k

T
〉 per parton is

of order 1 GeV/c at fixed-target energies, increasing to
3 GeV/c to 4 GeV/c at the Tevatron collider, whereas
〈kT〉 would be expected to be of the order of 0.3 GeV/c
to 0.5 GeV/c based solely on proton size.

The p
T

imbalance between the outgoing particles can
also be examined using kinematic variables other than
Q
T
. Given some finite k

T
, the two outgoing particles

no longer emerge back-to-back; the azimuthal angle
between the particles, ∆φ, will differ from 180◦. The
transverse momentum normal to the scattering plane,
p � � � , and the p

T
-balance quantity,

z = −(~p
T1
· ~p
T2
/p
T

2

2
) = (p

T2
/p
T1

) cos ∆φ, (1)

are two useful variables, each with two possible values
per pair of objects.
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Figure 4. Diphoton ∆φ, p � � � , Q
T
, and z distributions

for E706 π−Be data at
√
s = 31.1 GeV [31]. Overlayed

on the data are the results from NLO [8] (dashed) and
resummed [10] (solid) calculations. PYTHIA [37] results
(dotted) with 〈kT〉 = 1.1 GeV/c are also shown.

High-mass direct-photon pairs have been measured
at the Tevatron [33,31,36]. Distributions as a function
of ∆φ, p � � � , Q

T
, and z for such events from E706 [31]

are shown in Fig. 4. Overlayed on the data are the
results from both NLO [8] and resummed [10] pQCD
calculations. There are large differences in the pre-
dicted shapes. At leading order, each of these distri-
butions would consist of a δ function. While the NLO
prediction has finite width due to the radiation of a
single hard gluon, the resummed theory, which also
includes the effects of multiple soft-gluon emission, is
in better agreement with the data. This is particularly
true for Q

T
, where the NLO calculation tends towards

infinity as Q
T
→ 0, while the resummed (RESBOS [10])

calculation follows the shape of the data and goes to
zero. Also shown in Fig. 4 are the distributions from
PYTHIA [37], where k

T
effects are approximated by a

Gaussian smearing technique. PYTHIA provides a rea-
sonable description of the di-photon data using a value
for 〈k

T
〉 consistent with the measurements displayed in

Fig. 4. Comparisons between CDF and D 6O data lead
to similar conclusions [29]. There is also good agree-
ment between the WA70 di-photon data [32] and re-
summed pQCD [11]. The increased statistics expected
for Run II should allow for more detailed comparisons
between di-photon data and theory.

Similar evidence for k
T

effects is seen in analyses
of high-mass π0π0, ηπ0, and γπ0 pairs by E706 [31].
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Figure 5. p � � � distributions for γγ, π0π0, γπ0, and
ηπ0 for E706 π−Be data at

√
s = 31.1 GeV [31]. Over-

layed on the diphoton data are the results from NLO [8]
and resummed [10] pQCD calculations. PYTHIA [37]
results with 〈k

T
〉 = 1.1 GeV/c are also shown. Over-

layed on the π0π0 and γπ0 are the results from LO
pQCD calculations [38] for various values of 〈k

T
〉 and

fixed 〈q
T
〉 = 0.6 GeV/c. The π0π0 data have been

overlayed on the ηπ0 data for comparison.

This is illustrated by Fig. 5 which shows a comparison
of the p � � � distribution from each of these samples.
The LO pQCD calculation [38], which incorporates k

T

effects using a Gaussian smearing technique similar to
that used in PYTHIA [37], provides a reasonable char-
acterization of k

T
-sensitive variables such as ∆φ and

p � � � for 〈k
T
〉 similar to that measured for di-photons.

The 〈k
T
〉 values needed to provide good matches to the

data for π0π0 and γπ0 are slightly larger than for γγ,
but that is expected since π0’s emanate from final-state
quarks and gluons that can produce additional gluon
radiation. (We use 〈q

T
〉=0.6 GeV/c [35] for the p

T
due

to fragmentation.)

2.1.3. kT Phenomenology
Similar soft-gluon contributions are expected to be

present in other hard-scattering processes, such as in-
clusive production of jets or direct photons [39–42].
Resummed pQCD calculations for single direct-photon
production are currently under development [12–17].
Two recent independent threshold-resummed pQCD
calculations for direct photons [12,13] do not include
k
T

effects, but exhibit less dependence on QCD scales
than the NLO theory (see Figs. 6 and 7). These
threshold-resummed calculations agree with the NLO

Figure 6. Comparison between a threshold resummed
and a NLO theory calculation for direct-photon pro-
duction for two scale choices: p

T
/2 and 2p

T
[12].
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Figure 7. NLO and NNLO results for direct-
photon production in hadronic collisions compared to
E706 [45] pBe data at

√
s = 31.6 GeV [13].

prediction for the scale µ ≈ p
T
/2 at low p

T
, and show

an enhancement in cross section at high p
T
.

A method for simultaneous treatment of recoil and
threshold corrections in inclusive single-photon cross
sections has been developed [17] within the formal-
ism of collinear factorization. This approach accounts
explicitly for the recoil from soft radiation in the
hard-scattering subprocess, and conserves both energy
and transverse momentum for the resummed radiation.
At moderate p

T
, substantial enhancements from higher-

order perturbative and power-law non-perturbative
corrections have been found at fixed-target energies,
as illustrated in Fig. 8 in a comparison with the
E706 direct-photon measurement at

√
s = 31.6 GeV.
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Figure 8. Direct-photon cross section for the E706
data [45]. The dotted line represents the full NLO cal-
culation, while the dashed and solid lines respectively
incorporate pure threshold resummation [12] and joint
threshold and recoil resummation [17].

Although the present numerical results are only ex-
ploratory estimates of the size of expected effects, it is
already clear that the phenomenological consequences
are significant.

Approximate phenomenological approaches to k
T
-

smearing have been used in the past to investigate
deviations between data and NLO pQCD. The un-
derlying hypothesis is that the leading gluon in NLO
pQCD calculations is inadequate for describing the
full initial-state parton shower. Full parton shower
Monte Carlos such as PYTHIA or HERWIG have been
used to test this idea at collider energies [28]. We
used PYTHIA v5.71 [37] and the direct photon process
to extract the number of initial-state gluons as well as
amount of net k

T
present in initial-state gluons, after

subtracting the gluon with the highest initial state p
T
.

The number of initial-state gluons is shown in Fig. 9,
illustrating that the number is significantly larger than
the NLO pQCD approximation of either 0 or 1. The
net k

T
present, after subtracting the highest p

T
gluon,

is shown in Fig. 10 for 10 GeV/c and 50 GeV/c direct
photons in pp̄ collisions at

√
s = 1.8 TeV. The net p

T

of such remnant gluons is 2.6 GeV/c for direct photons
with p

T
= 10 GeV/c, and 5.2 GeV/c for p

T
= 50 GeV/c.

At fixed-target energies, parton-showering models do
not provide sufficient smearing because shower devel-

Figure 9. Number of initial-state gluons in PYTHIA

from the direct-photon process at
√
s = 1.8 TeV.

Figure 10. Net p
T

due to all but the leading gluon in
PYTHIA for direct-photon events.

opment is constrained by cut-off parameters that en-
sure the perturbative nature of the process. Since tra-
ditional NLO calculations do not account for the effects
of multiple soft-gluon emission, a kinematical model
was employed to incorporate kT effects in available
pQCD calculations of direct-photon (and π0) produc-
tion [24]. The relationship between this phenomeno-
logical kT-smearing and the Collins–Soper–Sterman
(CSS) resummation formalism [43,44] was considered
in some detail in Ref. [29].

The same LO pQCD [38] program that successfully
characterized high-mass pair production was used to
generate K-factors (ratios of LO calculations for any
given 〈k

T
〉 to the result for k

T
=0) for inclusive cross

sections (Fig. 11). These K-factors were then applied
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Figure 11. The variation of kT enhancements, K(p
T
),

for the E706 pBe data at
√
s = 31.6 GeV.

to the NLO calculations. This procedure involves a risk
of double-counting since some of the k

T
-enhancements

may already be contained in the NLO calculation.
However, the effects of such double-counting are ex-
pected to be small [24].

As illustrated in the upper part of Fig. 11, the
K-factors for direct-photon production at E706 are
large over the full range of p

T
, and have p

T
-dependent

shapes—a behavior reminiscent of that obtained from
the full resummation formalism [17]. The lower part of
Fig. 11 displays K-factors for π0 production, based on
the same model. The data appear to require somewhat
larger values of 〈k

T
〉 in the case of π0s. At the same

values of 〈kT〉 the K-factors in π0 production are some-
what smaller than for γ production. This is expected
because π0’s originate from the fragmentation of the
partons.

Figure 11 also displays the K-factor for photons used
by the MRST group [21] in recent fits to parton distri-
butions. Their result was obtained through a different
technique involving analytical smearing of the param-
eterized photon cross section, rather than an explicit
parton-level calculation. Although the correction is of
similar size, it has a different p

T
-dependence. It should

be noted, however, that despite the similarity in the
values of the K-factors used by the MRST group and
the ones presented here, the 〈k

T
〉 values cited by MRST

are lower by a factor of 2. This difference can be traced
to an erroneous relation between parameters of their
analytical smearing function and the transverse mo-
menta of partons in the hard scatter [21]. This has al-
ready been pointed out in Refs. [24,27]. The approach
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Figure 12. The photon and π0 cross sections for E706
pBe data at

√
s = 31.6 GeV [45] compared to the

k
T
-enhanced NLO calculations.

used here [24] is based on explicit parton kinematics
and therefore does not suffer from this problem.

The treatment of k
T
-enhancements proposed in

Ref. [27], based on parton distributions unintegrated
over the parton transverse momenta, suggests possi-
ble modifications of the above simple picture. Refer-
ence [27] imposes strong ordering of momentum trans-
fers of emitted gluons, which prevents transverse mo-
menta of the incoming partonic system from approach-
ing p

T
; k

T
values are correlated with the scale at which

the parton distributions are sampled. In their ap-
proach, the K-factors are expected to be smaller than
those shown in Fig. 11, and have less p

T
-dependence.

Additional scrutiny of the theoretical ideas should help
resolve these differences.

2.1.4. High-p
T

Production
Fixed Target

Invariant cross sections for inclusive direct-photon
and π0 production are displayed for the E706 pBe
data at

√
s = 31.6 GeV in Fig. 12, with overlays from

theory [45]. Discrepancies between NLO pQCD the-
ory (dotted curves) and the data are striking. The
enhancements, generated using 〈k

T
〉 values consistent

with the data on high-mass pairs (Fig. 5), can ac-
commodate both the shapes and normalizations of
direct-photon and π0 inclusive cross sections.

Comparisons between direct-photon data from
E706 [45], WA70 [46,47], and UA6 [48] and k

T
-
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Figure 14. Comparison between the WA70 and UA6
direct-photon data and NLO pQCD calculations with
and without k

T
enhancements, for several values of

〈kT〉.
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data and NLO pQCD calculations for several exper-
iments as a function of x � .

enhanced NLO pQCD [24] are shown in Figs. 13
and 14. The values of 〈k

T
〉 were based on the data for

high-mass pairs from E706 (Fig. 5), and the di-photon
data from WA70 [49,32] (〈k

T
〉 = 0.9±0.1±0.2 GeV/c).

The center-of-mass energies for WA70 and UA6 (
√
s ≈

24 GeV) are smaller than those for E706. Correspond-
ingly, 〈k

T
〉 values for these experiments are expected to

be slightly smaller than the values required for E706
(Fig. 3).

A recent survey of π0 production found that cur-
rent NLO pQCD calculations significantly undershoot
the data [26]. A comparison between π0 data and
NLO pQCD is shown in Fig. 15 for several experi-
ments [50]. The data are consistently a factor of 2
to 3 above theory. The above phenomenological
model should also be valid for pion production. Us-
ing 〈k

T
〉 similar to, but slightly higher than that for

direct photons, good agreement is obtained for π0’s
measured by E706 [45], WA70 [51], and UA6 [52]
(Figs. 16 and 17). The k

T
-enhanced predictions com-

pare well with the π0 cross sections, with all the E706
and UA6 direct-photon data, and with the π− beam
direct-photon cross sections of WA70.

Since k
T
-smearing affects similarly direct-photon

and π0 data, the ratio of direct-photon to π0 pro-
duction should be relatively insensitive to k

T
. Ex-

perimental and theoretical uncertainties also tend to
cancel in such ratios. Figure 18 shows the ratios of
cross-sections [50] for direct-photon to π0 production
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data and an NLO pQCD calculation with and without
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Figure 18. Ratios of direct-photon cross sections to
the π0 cross sections as a function of p

T
for various

experiments at several values of
√
s.

for WA70, UA6, E706, and R806 [53–55]. The results
from WA70 (Fig. 19) and UA6 (Fig. 20), at approxi-
mately the same

√
s, appear to differ significantly. The

ratio for NLO theory differs from that of WA70 by a
factor of three, but only by ≈ 30% from the UA6 data.
The WA70 and UA6 π0 results agree (Fig. 15) and
most of the difference is therefore in the direct-photon
cross section. Similar γ/π0 comparisons are shown
for E706 at

√
s = 38.8 GeV (Fig. 21) and R806 at√

s = 63 GeV (Fig. 22). The same 30% level of
agreement can also be found for the E706 data at√
s = 31.6 GeV and the R806 data at

√
s = 31 GeV

and 45 GeV.
The discussion of direct-photon data from fixed-

target and ISR experiments [25], while rejecting the
k
T

interpretation for the observed deviations, pointed
to limitations for the applicability of NLO calculations
at lower-p

T
values and to inconsistencies among experi-

ments used in comparisons to NLO theory. Given the
shortcomings of a purely NLO description, a global
comparison of the available data to fully resummed
theory may provide useful insights into these issues.

Run I Results

The consequences of k
T

smearing are expected to
depend on

√
s (Fig. 3). At the Tevatron collider, where

p
T

is large compared to k
T
, the above model of soft-

gluon radiation leads to a relatively small modification
of the NLO cross section. Only the lowest end of the
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Figure 19. γ/π0 comparison for the WA70 pp data at√
s = 23 GeV. Overlayed are the results from the NLO

pQCD calculations.

10
-1

1

4 4.5 5 5.5 6 6.5
pT (GeV/c)

γ/
π0

γ/π0 in pp reactions at √s=24.3 GeV  (UA6)

NLO Theory
µ=pT/2

CTEQ4M pdf
π0 uses BKK ff

Figure 20. γ/π0 comparison for the UA6 pp data at√
s = 24.3 GeV. Overlayed are the results from the

NLO pQCD calculations.
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Figure 21. γ/π0 comparison for the E706 pBe data
at
√
s = 38.8 GeV. Overlayed are the results from the

NLO pQCD calculations.
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Figure 22. γ/π0 comparison for the R806 pp data at√
s = 63 GeV. Overlayed are the results from the NLO

pQCD calculations.
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Figure 23. A comparison of the CDF isolated direct-
photon data at

√
s = 1.8 TeV from Run Ib with a

NLO pQCD prediction and two implementations of
soft gluon corrections to the NLO prediction [56].
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Figure 24. A comparison of the D 6O isolated direct-
photon data at

√
s = 1.8 TeV from Run Ib with a

NLO pQCD calculation in both the central and for-
ward rapidity regions [57].

Figure 25. A comparison between CDF and UA2 data
at
√
s = 630 GeV.

p
T

spectrum is modified significantly, and the K-factor

exhibits the expected ∼ 1/p
T

2 behavior for a power
correction.

A comparison of the results from Run Ib, shown
in Figs. 23 and 24 [56,57], confirms the expected de-
viation in shape at low p

T
. Using di-photons, CDF

has measured 〈k
T
〉 = 3.6 ± 0.8 GeV/c at

√
s =

1.8 TeV [33]. Employing this value, the phenomeno-
logical model adequately describes the shape of the
data in Fig. 23. Also shown in this figure is an im-
plementation of soft-gluon corrections using an en-
hanced parton shower [22]. The phenomenological-k

T

model provides a better agreement with data than is
available in the enhanced parton shower model. The
agreement between the phenomenological model imple-
mentation of kT smearing and the direct-photon data
can also be seen in preliminary results from CDF at√
s = 630 GeV (Fig. 25).
The CDF data in Fig. 23 have been normalized up-

wards by a factor of 1.2 for the benefit of a shape com-
parison. Without this normalization, then the CDF
data lie below the NLO pQCD calculation at high p

T
.

Figure 25 also contains a comparison between CDF and
UA2 [58,59] data at

√
s = 630 GeV, where a similar

deficit is observed at high p
T

for the UA2 data. There
is currently no explanation for this effect.
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Figure 26. Left: Distributions of azimuthal angle dif-
ference ∆φ between the direct photon and a recoil
charged track for several values of k

T
and for two

photon p
T

ranges. Right: Similar dependences for the
photon p � � � .

2.1.5. Expectations for Run II
k
T

Studies at Low-p
T

To study the level of k
T

induced by multiple gluon
emissions at the collider, the experiments have em-
ployed the relatively low-statistics di-photon data. In
Run II, both CDF and D 6O will have precision mag-
netic tracking, which will permit studies of k

T
effects

using “two-arm” data on pairs consisting of a direct
photon and a recoil charged track, in a spirit similar to
that of the fixed-target investigations of γπ0 and π0π0

pairs discussed before. The advantage of this approach
is that it will obviate the need for jet reconstruction
(difficult at low p

T
), and minimize complications from

jet energy scale calibration. Of course, photon+jet
systems are also of interest, but may be harder to study
in the range of interest for checking the effects of k

T

smearing.
We simulated the expected behavior of photon–track

systems using the same LO Monte Carlo [38] employed
in previous fixed-target studies. The results are illus-
trated in Fig. 26 for ∆φ and p � � � of the photon, for
two representative ranges of photon p

T
that span the

region where the k
T

effects appear to be important in
the inclusive photon cross sections from Run I. (For the
measurement of p � � � for photon, the scattering plane
is defined by the colliding beams and the recoil track.)
The sensitivity to the value of 〈k

T
〉 in the range of 0
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Figure 27. Comparisons of simulated discriminations
between photons (solid) and π0’s (open) for the D 6O
detector in the Run I configuration (top, discriminant
variable is log(EEM1/ETOT); for the same discriminant
in the Run II configuration (middle); and for the Run II
configuration and log(ECPS/ETOT) discriminant (bot-
tom).

to 3.5 GeV/c is clearly seen for both variables. The ∆φ
distributions become narrower with increasing photon
p
T
, as expected from simple kinematic arguments. For

a fixed 〈kT〉, the width of the p � � � distributions is
relatively insensitive to p

T
, and can therefore be par-

ticularly useful for mapping out the dependence of k
T

on event kinematics (especially on the p
T

of the pho-

ton). To properly interpret the widths of such distri-
butions in terms of k

T
induced by gluon-radiation, it

is important to subtract the amount generated in the
fragmentation of partons into the charged particles (as
was done in the fixed-target analyses).

Additional handles on interpreting the data can
be obtained through studies of p

T
distributions of

charged particles from fragmentation of partons recoil-
ing against direct-photon triggers. In the presence of
significant initial-state k

T
, such distributions are ex-

pected to become softer than expected from standard
fragmentation functions (determined e.g. from e+e−

data), since the k
T
-kick tends to increase the photon

p
T

while taking it away from the recoil side. This should
be observed most clearly at low photon p

T
’s, where the

effect from k
T

is greatest.
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Figure 28. Additional γ vs π0 discrimination with the
D 6O detector in Run II is possible using differences in
the respective distributions for the number of recon-
structed preshower clusters matched with the calorime-
ter shower (left) or for the width of the preshower
cluster (right). Solid lines are for γ’s, dashed for π0’s.

Photon Purity

The particularly interesting connection between two-
arm studies and measurements of the inclusive photon
cross section is mainly at relatively low p

T
(10 GeV/c

to 35 GeV/c), where Run I results indicate significant
deviation of the cross section from expectations from
NLO pQCD (Figs. 23 and 24). This is also the region of
high statistics, and, consequently, where detailed stud-
ies will be possible. It is therefore important to achieve
a high photon-signal purity in this region, which has
proved to be difficult in Run I.

In the case of D 6O, calorimeter response will be mod-
ified in Run II by the presence of a central solenoid
magnet and preshower detectors [60]. The separa-
tion of photon signal and background in Run I was
based on the fraction of electromagnetic energy de-
tected in the first longitudinal layer of the calorimeter
(EEM1/ETOT). This quantity is particularly sensitive
to differences in the early stages of shower develop-
ment initiated by single photons, and by photons from
decays of π0’s of the same p

T
. In the Run II configu-

ration, the signal–background discrimination based on
this variable is expected to deteriorate, but simulations
indicate [61] that Run I performance can be recovered
by using instead the fraction of energy deposited in
the preshower detectors (ECPS/ETOT), as illustrated

CPS cluster residual
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0 0.5 1 1.5 2

Figure 29. The residual of CPS cluster position relative
to the photon or π0 in the R-φ plane in the D 6O detec-
tor. Clusters from π0’s have larger residuals, especially
when one of the decay photons does not convert in the
solenoid.
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Figure 30. Efficiency for a π0 to pass covariance matrix
χ2 cuts corresponding to photon efficiencies of 90%
and 60%. (Preliminary study for the D 6O detector in
Run II.)

in Fig. 27 for photons at central rapidities. Using
the fine-grained shower-profile information from the
preshower strips (ca. 7 mm triangles), an additional
factor of two rejection of background (while maintain-
ing high signal-efficiencies) has been achieved in our
Monte Carlo simulations [61]. As illustrated in Fig. 28,
multiple preshower clusters for sufficiently large sep-
aration between photons from meson decays can be
resolved, or inferred from the widths of clusters when
the showers are not fully separated. Results are shown
for p

T
≈ 15 GeV/c and η ≈ 0.95, where the separation
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of photon signal from background is particularly diffi-
cult. Another variable useful for the discrimination is
the distance in the R–φ plane between the detected
CPS cluster and the photon position (the latter cal-
culated from the primary vertex and the position of
the calorimeter cluster) [62]. Figure 29 shows this
distribution for p

T
≈ 15 GeV/c and η ≈ 0.1.

Even higher background rejection can be achieved
by exploiting correlations between the calorimeter and
preshower shower profiles in a covariance-matrix ap-
proach. A study was undertaken using a simplified
version of the Run I covariance matrix, with added
preshower variables [62]. Figure 30 shows the E � de-
pendence of the π0 efficiency for χ2 cutoffs correspond-
ing to 90% and 60% photon efficiency.

In the central region, CDF tools for γ–background
separation in Run I (shower width in the electro-
magnetic shower-maximum detector, and conversion in
the central-preradiator detector) will remain the same.
These tools provide a clear separation of the photon
signal and the π0-dominated background. The addi-
tion of a new scintillator-based endplug calorimeter
with a preshower and shower-max detector will offer
an extension of these tools to the forward region in
Run II.

Thus, we expect a better signal purity at low p
T

in
Run II than was achieved in Run I, which will facilitate
more precise measurements of low-p

T
direct photons

and di-photons.

Photons at High-p
T

At high values of p
T
, separating the direct-photon

signal from background and the expected reach in p
T

are determined by the collected luminosity. As shown
in Sec. 2.2, for the initial luminosity of 2 fb−1, the
inclusive direct-photon cross section measurement can
be extended beyond 300 GeV/c. While the high-p

T

data will permit detailed tests of perturbative QCD, it
is not expected to be sensitive to differences in recent
parameterizations of gluon distributions at large x (eg.,
CTEQHJ and CTEQM). Thus, the determination of
the large-x gluon distribution will have to continue to
rely on direct-photon data from fixed target experi-
ments and on jet data at the Tevatron.

2.1.6. Impact on the Gluon Distribution
The largest uncertainty in any parton distribution

function (PDF) is that for the gluon distribution. At
low x, the gluon can be determined indirectly from
scaling violations in quark distributions, but a di-
rect measurement is required at moderate to large
x. Direct-photon production has long been regarded
as potentially the most useful source of information
on the large-x part of the gluon distribution. And

Figure 31. The ratio of gluon distributions obtained
in the study in Ref. [18] to the CTEQ4M gluon at
two different Q scales. All of these gluon distributions
correspond to PDF’s which provide a reasonably good
fit to the CTEQ4 DIS/DY data set.

direct-photon data, especially from CERN fixed tar-
get experiment WA70, have been used in several
global analyses [21,63]. Another process sensitive to
the gluon distribution, through the gluon–gluon and
gluon–quark scattering subprocesses, is jet production
in hadron–hadron collisions. Precise data from Run I
are available over a wide range of transverse energy
and, indeed, provide a constraint on the gluon distri-
bution in an x range from about 0.05 to 0.25. How-
ever, the low statistical power of the jet cross section
at high E � , and the dominance of the qq̄ scattering
subprocess in that kinematic region, do not provide
for a similar constraint at large x.

Figure 31 shows several gluon parton distribution
functions [18] that provide a reasonable fit to the DIS
and DY data used in the CTEQ4 fits [19]. The ex-
cursions shown (normalized to the CTEQ4M gluon)
provide an estimate of the uncertainty in the gluon
distribution. The gluon distribution seems reason-
ably well-constrained by these data, except at large x.
Also shown in Fig. 31 are the gluon distributions from
CTEQ5HJ [64] (which best fits the Tevatron high-E �

jet data) and three recent MRST PDF’s [21]. The
MRST PDF’s incorporate the WA70 direct-photon
data using the k

T
-enhancements described above.

Nevertheless, the theoretical problems associated with
direct-photon production have discouraged the CTEQ
collaboration from using the direct-photon data in
their recent fits [64]. The recent work on resummation
offers hope that this situation will change.
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T
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The CTEQ4HJ PDF’s were determined by increas-
ing the weight for the CDF jet cross section at
high E � [19]. In the resultant fit, the increase was
achieved through a significant increase in the gluon
contribution at large x, without inducing serious con-
flicts with any of the other experiments used in the
CTEQ4 data sets. This increase was allowed by the
uncertainty in the gluon distribution in this x range,
a flexibility not present for any of the quark distri-
butions. Another demonstration of the uncertainty
in the gluon distribution at large x can be seen in
Fig. 32, where the CTEQ4HJ gluon distribution is
plotted along with that of CTEQ4M and three recent
MRST PDF’s. At x ≈ 0.6, there is over an order
of magnitude spread between the CTEQ4HJ and the
MRST g ↓ gluon distributions.

The CTEQ4HJ gluon distribution (and its successor,
CTEQ5HJ) provides the best description of not only
the CDF jet cross section, but that of D 6O as well. At
x ≈ 0.5, corresponding roughly to E � ≈ 450 GeV for
central η, a doubling of the gluon distribution (com-
pared to CTEQ4M) results in only a 20% increase in
the inclusive jet cross section. On the other hand,
the fixed-target direct-photon yield of E706, produced
mainly through gq scattering, is proportional to the
gluon distribution. A fit using the E706 direct-photon
data and the k

T
K-factors is also shown in Fig. 32;

this result is very similar to the CTEQ4M gluon. At

the highest reach of the E706 data, the CTEQ4HJ
gluon distribution is a factor of 4 to 5 larger than the
CTEQ4M gluon. With the advent of more complete
theoretical treatments [17] of direct-photon produc-
tion, the E706 data should have great impact on the
determination of the behavior of the gluon at large x.
This would have implications not only for fixed-target
direct-photon data, but also for collider physics at
highest Q2 scales.

2.1.7. Conclusions
Direct-photon physics remains a viable and interest-

ing program for Run II of the Tevatron. The Run II
measurements of single and double direct photons, and
of photon and jet or single track correlations, will reach
larger p

T
and have improved detection efficiency at low

p
T
, compared to Run I. Although the data are not ex-

pected to improve directly our knowledge of the gluon
distribution at intermediate and large x, it can do
so by providing a testing ground for newly developed
theoretical models and formalisms, and by helping
clarify the currently confused role that multiple gluon
emission play in direct-photon production (and other
high-p

T
processes). Once this physics is properly un-

derstood, the existing fixed-target data should provide
one of the best constraints on the gluon distribution,
as has been envisioned for a long time.

We have examined the best available experimental
information on production of single and double direct
photons (and mesons) at large p

T
in both fixed-target

and collider energy regimes. Recent theoretical de-
velopments offer optimism that the long-standing dif-
ficulties in the proper description of these processes
can finally be resolved. While there is still no final
consensus, the trend of recent developments has led
to an increased appreciation of the importance of the
effect of multiple gluon emission, and to the emergence
of tools for clarifying this issue.

To summarize, measurements of the production of
high-mass pairs of high-p

T
particles at WA70, E706,

CDF, and D 6O provide consistent evidence for the
presence of large k

T
. NLO pQCD calculations [8],

which include effects due to the radiation of a sin-
gle hard gluon, compare poorly to kT-sensitive dis-
tributions in di-photon data. RESBOS [10], a NLO
pQCD calculation, which also includes the effects of
multiple soft-gluon emission through the CSS resum-
mation technique, compares well with the shape of
the di-photon data. LO pQCD calculations [37,38]
that incorporate k

T
effects through Gaussian smear-

ing techniques, provide reasonable characterizations of
distributions for pairs of direct photons and mesons.

While the apparent inconsistencies between differ-
ent direct-photon and π0 data sets are not under-
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stood [24–26], we found it instructive to consider
results on the γ/π0 ratio from WA70, UA6, E706,
and R806. Various experimental and theoretical un-
certainties tend to cancel in such a ratio, which is also
relatively insensitive to kT-effects. We find that the
ratio from theory agrees to ≈ 30% with data from
UA6, E706, and R806 over the range 24 GeV <

√
s <

63 GeV.
LO pQCD has been used to estimate the impact of

kT on the inclusive production of high-p
T

direct photons

and π0’s. This simple phenomenological model is able
to account for differences between NLO pQCD calcula-
tions and inclusive data over a wide range in

√
s. While

the approximate nature of such models is clear, and has
been discussed in several recent papers, the emerging
formalism for the full (threshold and recoil) resumma-
tion of inclusive direct-photon cross sections appears
to vindicate much of the understanding of effects from
multiple gluon emission that has been achieved using
approximate tools. The resummation formalism can be
expected to provide a solid foundation for the treat-
ment of k

T
, at which time a global reexamination of

parton distributions, with an emphasis on the determi-
nation of the gluon distribution from the direct-photon
data, should become possible [65].

2.2. Direct Photon Production at the
Tevatron1

2.2.1. Introduction
In this section we summarize features of direct pho-

ton production which are relevant in the kinematic
range to be covered in Run II. In Sec. 2.2.2, a compari-
son between Run I data and the corresponding theoret-
ical description is presented. Several potential problem
areas are noted. Sec. 2.2.3 contains a brief description
of the kinematic reach expected for Run II, based on
an integrated luminosity of 2 fb−1. Included here is
a discussion of the sensitivity to parton distribution
functions and to what extent direct photons at Run II
can help constrain the gluon distribution. In Sec. 2.2.4
some predictions for photon-jet correlations are pre-
sented. The potential of observables other than the
usual single photon p � distribution to help elucidate
the underlying dynamics is also discussed.

2.2.2. Comparison to Run I Data
Data for the inclusive cross section for direct photon

are available over a wide range in energies from fixed
target and collider experiments. By now it is well
known that it has not yet been possible to simulta-
neously describe all of the experimental results with a
next-to-leading-order (NLO) QCD calculation. A pat-
tern of discrepancies between theory and experiment

1 Contributed by: J. Huston and J.F. Owens

exists in both the fixed target and the collider data
sets. This situation has been reviewed in [23–25]. An
analysis similar to that for direct photon production
in Ref. [25] has been performed for the case of π0

production [26]. The two processes are closely related
since π0’s decaying to two photons provide much of
the background which must be dealt with when ex-
tracting the signal for direct photon production. Some
of these issues are also dealt with in Sec. 2.1 where a
detailed comparison to fixed target data is also pre-
sented. While it is clearly of interest to understand
direct photon production over the entire range of avail-
able energies, this section will focus on those aspects of
the data which can most directly be addressed during
Run II. The first step is to examine the theoretical
description of the data from Run I.

A comparison of NLO QCD predictions to the di-
rect photon data from CDF and DØ has indicated
the presence of a deviation of the data from theory
at low values of transverse momentum [23,24]. This
deviation decreases if the effects of soft gluon radia-
tion are taken into account by applying a Gaussian
k � smearing model using a value of 〈k � 〉 measured in
di-photon production in the two experiments.∗ Such a
k � treatment is phenomenologically motivated.

Recently, there has been progress in more sophisti-
cated treatments of soft gluon radiation near threshold
in the parton-parton scattering process [14,66,13]. At
large values of transverse momentum for the photon,
the phase space for the emission of additional gluons
in the hard scattering is limited. This limitation on
the emission of real gluons upsets the balance in the
theoretical expressions between virtual and real emis-
sion contributions. The result is large logarithmic
corrections near the threshold for the parton-parton
scattering subprocesses. These large corrections can
be resummed in a relatively compact formalism. The
results [12,66,13] indicate that the corrections to ex-
isting next-to-leading-order calculations are large as
x � = 2p � /

√
s approaches 1. Away from the re-

gion at the edge of phase space it is observed that
the corrections to the NLO results coming from the
threshold resummation are relatively small over much
of the x � range covered in the fixed target experiments
when the renormalization and factorization scales are
chosen to be p � /2 and the resummed results show
an overall reduction in the sensitivity to the choices
of these scales. However, the threshold resummation
corrections alone are not sufficient to explain the dis-
crepancies observed between the theoretical predic-
tions and some of the fixed target experimental results.
In addition, threshold resummation cannot explain the

∗The value of kT can be directly measured in di-photon events
since the photon 4-vectors can be measured precisely.
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deviations observed by DØ and CDF at the low p � end
of the measured distributions.

Another approach to resumming soft gluon effects is
that of Ref. [27] which uses the DDT [67] or q � -space
method. This technique has recently been applied to
vector boson production [68] and compared with the
impact parameter method of Ref. [44]. In Ref. [27]
a parton-parton luminosity function is defined which
depends on the net transverse momentum of the pair of
colliding partons. The parton distributions are probed
not at the scale of the hard scattering process, but
instead at a scale given by q � . This means that the
scale of the parton distributions is typically somewhat
smaller than, for example, the transverse momentum of
the produced photon. This results in an enhancement
of the cross section. In addition, the parton transverse
momentum is taken into account when the final photon
p � is calculated. Some enhancement of the fixed tar-
get predictions is noted using this technique, but it is
insufficient to fully describe all of the fixed target data.
For the collider energy range, Ref. [27] quotes only a
small effect, which does not appear to be sufficient to
explain all the observed deviations. At present, the
resummation is done only with the leading-log terms
included. More results from this technique are antici-
pated as next-to-leading-log terms are included as well.

Quite recently a new formalism for simultaneously
incorporating both the threshold resummation and the
resummation of k � (or recoil) effects has been de-
veloped [17]. This formalism possesses the desirable
property of simultaneously conserving both energy and
momentum in the resummation process. The initial
results presented in [17] indicate that the threshold
enhancement referred to above is correctly reproduced
while, in addition, there is a large enhancement due
to the newly included recoil effects. Detailed appli-
cations and studies of the scale dependence and the
dependence on non-perturbative input parameters are
expected soon.

The initial indications of discrepancies between the-
ory and experiment in the collider data came from
results taken in Run Ia. A comparison of the higher
statistics results from CDF in Run Ib, shown in Fig. 23,
confirms the shape deviation at low p � and the agree-
ment with the k � smearing correction obtained using
the Gaussian smearing model. (Also shown is an at-
tempt to implement the soft gluon corrections using an
enhanced parton shower [22]. In this case, the effect
seems to drop off more slowly than the deviation ob-
served in the data.) Note that the k � smearing correc-
tion falls off roughly as 1/p2� , as expected from a power
correction type of effect. This is not true in the case
of fixed target experiments, as discussed in Sec. 2.1,
where the steeply falling parton distribution functions

enhance the effects of the soft gluon radiation.
The DØ direct photon cross section for the central

region is also consistent with such a deviation at low
p � [57], as shown in Fig. 24 while no conclusion can
be reached for the DØ cross section in the forward
region (see the lower half of Fig. 24 and Ref. [57]). The
possibility that the discrepancy between theory and
experiment may be dependent on rapidity is interesting
and is one that can be investigated in more detail with
the higher statistics expected from Run II.

In an attempt to achieve a better theoretical descrip-
tion of the data it is important to investigate what flex-
ibility exists within the conventional QCD hard scat-
tering NLO formalism. In order to perform perturba-
tive QCD calculations, one must specify the renormal-
ization and factorization scales. For the latter, there
are two scales, corresponding to the factorization of
collinear singularities for the initial state parton dis-
tributions and the final state fragmentation functions.
For most hard scattering calculations these three scales
are chosen to be proportional to the characteristic large
transverse momentum - that of the photon in this case.
Often, all three scales are set equal to each other.
However, this latter step is not necessary and it is
reasonable to ask whether or not one can describe the
shapes of the CDF and DØ data in the region below
p � = 30 GeV by a suitable variation of all three of
the scales [69]. In Fig. 33 the Run Ib CDF data are
compared to several curves corresponding to different
choices of the renormalization and factorization scales.
One can see that it is possible to get a steepening of
the slope at the low-p � end, but only at the price of an
increase in the overall normalization. Apparently, it is
not possible to get both the shape and the normaliza-
tion correct by such a strategy.

In Fig. 23, the CDF data has been normalized up-
wards by a factor of 1.2 for an easier shape comparison.
If this normalization is taken out, as shown in Fig. 34,
it is evident that the data fall below the NLO QCD
prediction at high p � . Also shown is a comparison to
the CDF photon data taken at

√
s = 630 GeV and the

photon data from UA2 [59] where a similar deficit is
observed at high p � . For most observables, typically,
the data lie above the NLO QCD predictions so this is
somewhat of an unusual situation. It is interesting to
note that a measurement of the photon fraction (of the
photon candidate sample) indicates that the photon
fraction seems to be leveling off at approximately 80%,
rather than saturating the sample at near 100% at high
p � . The latter outcome would be predicted from very
basic considerations: with a fixed E � isolation cut,
jets are required to fragment into a π0 with a higher
z value as the p � of the photon candidate increases.
Such a fragmentation is suppressed by the sharp falloff
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Figure 33. Comparison of the CDF Run Ib data with
several NLO curves corresponding to different choices
of the renormalization and factorization scales.

of the fragmentation function at high z. It will be
interesting and important to understand this behavior.
The increased statistics of Run II will allow both the
low p � and high p � regions to be investigated more
thoroughly.

2.2.3. Expectations for Run II
For the purposes of this section we shall assume

an integrated luminosity for Run II of 2 fb−1. As
noted in Sec. 2.2.2, the data on direct photon pro-
duction from Run I extend to a transverse momentum
of approximately 120 GeV. The increased statistics
expected from Run II greatly extend this range as
shown in Figs. 35 and 36. These figures have been
generated using the next-to-leading-logarithm program
of [70] with the CTEQ5M [64] parton distributions
and with the renormalization and factorization scales
set equal to p � /2. The errors shown are statistical
only and the results are presented for the transverse
momentum range where more than 10 events are ex-
pected in a 10 GeV bin of p � with a total integrated
luminosity of 2 fb−1 and 4 fb−1, respectively. No
efficiency/acceptance corrections, however, have been
applied to these estimates. Typically, these corrections
are on the order of 50%.

One can see that the range of useful statistics
extends past 300 GeV in the first case and past
350 GeV in the second. This extended coverage in p �

corresponds to an increased range of sensitivity for the

Figure 34. A comparison of the CDF photon data from
Run Ib (at both

√
s = 630 GeV and

√
s = 1800 GeV)

with a NLO QCD prediction and the direct photon
data from UA2.
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Figure 36. Direct photon p � distribution for Run II
with errors based on an integrated luminosity of 4 fb−1.

values of the parton momentum fractions of the collid-
ing hadrons. Recall that the inclusive cross section for
single photon production in the central region is sensi-
tive to average values of the parton momentum fraction
x approximately equal to x � = 2p � /

√
s. A range of

x � out to about 0.3 will be covered, corresponding
to a similar range of 〈x〉 for the parton distributions.
This extended range suggests that the relative ratios
of the underlying subprocesses should change signifi-
cantly over the p � range to be covered. To investigate
this, the inclusive cross section is displayed in Fig. 37
along with the contributions from the various parton
scattering subprocesses. For ease of comparison, the
same results are shown in Fig. 38 on a linear scale
relative to the total rate. The results in both of these
figures were generated using the leading-logarithm ap-
proximation with the CTEQ5L parton distributions.
The leading-log approximation was chosen so that the
separation between the point-like and fragmentation
contributions would be unambiguous. Processes with
two or more partons in the final state in addition
to the photon can populate regions of phase space
where the photon is collinear with one of the par-
tons. These topologies correspond to the fragmenta-
tion process. Thus, the higher order terms mix the
contributions from the point-like and fragmentation
(or bremsstrahlung) components. One must define,
through the use of appropriate experimental cuts, pre-
cisely what is meant by the bremsstrahlung compo-
nent. For the purposes of the discussion being pre-
sented here the leading-log predictions are sufficient.
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Figure 37. Contributions of the various subpro-
cesses for direct photon production calculated in the
leading-log approximation using the CTEQ5L parton
distributions.

Note that the magnitude of the next-to-leading-order
corrections relative to the leading-log predictions for
the choice of scale used here (p � /2) is slowly varying
over the kinematic region being studied, as shown in
Fig. 39.

The results shown in Figs. 37 and 38 illustrate sev-
eral points worth noting. First, the fragmentation
component is expected to be a negligible fraction of
the total rate. This is due primarily to the imposition
of an isolation cut which rejects events with more than
1 GeV of hadronic energy accompanying the photon in
a cone of radius 0.4 about the photon direction.† Such
a cut is necessary experimentally in order to control the
copious background to the photon signal from jets frag-
menting into π0’s. This cone isolation energy is almost
completely saturated by the underlying event energy
accompanying the hard scatter, leaving little room for
energy from the fragmentation of the jet. Note that the
precise value of the fragmentation contribution relative
to the total rate will vary as one includes higher order
effects, but the overall contribution is still expected to
be small. Next, one sees the dominance of the qg → γq
subprocess in the region out to about 100 GeV in p � ,
i.e., the range covered by the Run I data. Beyond
this range the qq → γg subprocess becomes dominant.

†This cut was used for the CDF Run Ib direct photon mea-
surements. The value of the isolation energy cut in Run II will
have to be increased somewhat due to the contributions to the
isolation energy from the larger number of minimum bias events
expected in the same crossing.
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Figure 38. The same results as shown in Fig. 37 except
on a linear scale and normalized to the total rate at
each value of p � .

Gluon-gluon initiated processes are not expected to
play a significant role over the p � range shown.

One of the classic applications of direct photon pro-
duction is to provide constraints on the gluon dis-
tribution in global fits of parton distributions. The
gluon distribution is especially uncertain in the region
beyond x ≈ 0.15 [18]. Run I results on high-p � jet
production from the CDF [71] and DØ [72] collabo-
rations favor a gluon distribution which is larger at
high-x than was anticipated from global fits which did
not emphasize the high-p � jet data. One such example
is the CTEQ5HJ [64] set of distributions which are
favored by both sets of jet data. One might hope that
the direct photon data could shed some light on this
issue, but such is not expected to be the case. As shown
in Fig. 40, the ratio of the CTEQ5HJ and CTEQ5M
predictions is consistent with unity within about 5%
over the p � range under consideration. This can be
understood by referring back to Fig. 38 where it is
shown that the gq subprocess decreases in importance
precisely where one would like to gain a constraint on
the gluon distribution.

2.2.4. New Measurements
As noted in the introduction, the process of direct

photon production is of interest for a variety of rea-
sons. In particular, it offers a probe of hard scattering
dynamics which complements that of jet production.
At this point, the comparison between theory and ex-
periment has not reached the quantitative level that
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Figure 39. NLO/LO ratio for direct photon produc-
tion.
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Figure 41. Jet rapidity distribution for photons in the
central rapidity region calculated with the CTEQ5L,
CTEQ5M, and CTEQ5HJ parton distributions with
the program of Ref. [70].
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Figure 42. Jet rapidity distribution for photon in a
forward rapidity region calculated with the CTEQ5L,
CTEQ5M, and CTEQ5HJ parton distributions with
the program of Ref. [70].

one would like, so there is clearly more to be done.
Furthermore, direct photon production has the poten-
tial to provide constraints on the parton distribution
functions, particularly that of the gluon. Nevertheless,
the less than satisfactory description of the current
data has meant that this role is, as yet, unfulfilled.
Finally, one must understand conventional sources of
energetic photons before being able to confidently use
photons as part of the signal for new physics. With
these points in mind, it is natural to ask whether there
are additional observables which could help shed light
on some of the theoretical problems.

To date, almost all of the experimental results for
direct photon production have been for the transverse
momentum distribution of the photon, i.e., the single
photon inclusive cross section. Clearly, there is addi-
tional information to be gained by studying the joint
rapidity distributions of the photon and a jet, e.g.,
dσ/dp � dy � dy� � � where p � represents the transverse
momentum of the photon. This observable has been
measured by the CDF Collaboration [73] for photons in
the the central region with 16 GeV < p � < 40 GeV. In
this case the theoretical description of the jet rapidity
distribution is good. However, no information is yet
available for other values of photon rapidity. Some
leading-log and next-to-leading-log predictions for this
distribution are shown in Fig. 41 for central photons
and Fig. 42 for forward photons. Notice the character-
istic broadening of the jet rapidity distribution as the
photon is moved forward. Note, too, the change in the
ratio between the leading-log and next-to-leading-log
predictions as the photon rapidity is varied. Predic-
tions are shown for both the CTEQ5M and CTEQ5HJ
parton distributions. There is only a slight difference
between the two sets, due primarily to the fact that the
curves were generated for p � > 10 GeV. The resulting
low values of x � result in the parton distributions being
probed in a region where there is little difference be-
tween the CTEQ5M and CTEQ5HJ sets. On the other
hand, that means that for these distributions there
will be relatively less uncertainty due to the parton
distributions and that, therefore, such measurements
may be useful in helping to understand the p � re-
gion where there is a discrepancy between the exist-
ing collider data and the theoretical results. In this
regard the DØ results for the inclusive photon yield
shown in Fig. 24 are interesting as they may indicate
that the theory/data discrepancy has some rapidity
dependence. The lesson here is that photon-jet joint
observables would be helpful in sorting out the source
of the disagreement between theory and experiment.
Note that if one wanted to increase the sensitivity to
differences between parton distributions, then a larger
minimum p � cut could be employed.
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As discussed in Sec. 2.2.2, there is some indication
that the photon yield above a transverse momentum of
about 30 GeV may actually be less than the theoretical
predictions, in contrast to the situation at lower values
of p � . It was mentioned that this may be related to the
observed behavior of the γ/π0 ratio. This issue is com-
plicated by the necessity of placing isolation cuts on
the electromagnetic triggers in order to reduce the π0

background. NLO Monte Carlo programs can simulate
the effect of these isolation cuts, but the experimental
dependence on the parameters of the cuts has not yet
been compared to that of the theory. If the theoreti-
cal treatment of the isolation cuts is wrong, then the
comparison of the NLO results to collider data must be
considered suspect. In recent years the question of the
theoretical treatment of such isolation cuts has been
studied by several authors [74–76]. What is needed is
a data set showing how the cross section depends on
the cone size and the energy threshold utilized in the
isolation cuts. Similar comparisons for jet production
have helped refine the various jet algorithms and have
been very useful in understanding issues related to the
theoretical description of jets.

2.2.5. Conclusions
Run II offers many opportunities to refine our under-

standing of the production of photons in hard scatter-
ing processes. The kinematic reach in transverse mo-
mentum should be greatly extended and the statistical
precision of the data will also be increased. While there
are still problems with the theoretical description of the
existing data, the Run II data have the potential to
shed some light on these issues. In particular, data for
photon-jet correlations and for the dependence of the
cross section on the parameters of the photon isolation
cuts will be helpful. A better theoretical understanding
of direct photon production will enable this process to
be better used in the study of large transverse momen-
tum processes and the search for new physics.

3. Topics in Weak Boson Production†

The very large number of W and Z boson events
CDF and DØ will collect will yield precision mea-
surements of the W mass and width [1], which are
fundamental parameters of the Standard Model and
thus need to be determined with the highest possible
accuracy. The Run II vector boson datasets will of
course provide other important advances in the field
of electroweak physics, and will be the starting point
of most new physics searches; but they will also be-
come standard tools for the understanding of many

†Contributed by: D. Casey, T. Dorigo, M. Kelly, S. Leone,
W.K. Sakumoto, and G. Steinbrück

sources of systematic uncertainty in otherwise unre-
lated physics studies. In this Section we will give an
overview of some of the additional studies it will be
possible to carry out with vector bosons in Run II; for
rare decays of W bosons and other topics not covered
here see Ref. [77].

3.1. The W Cross Section as a Luminosity
Monitor

At both DØ and CDF, the uncertainty on the total
integrated luminosity is approximately 4.5% [78,79].
Though measuring the luminosity is difficult to do well,
any measurement at the collider that has an absolute
normalization depends on it. In several important
cross section measurements made during Run I, this
uncertainty contributed greatly to the overall measure-
ment uncertainty. In particular, for both of the W
and Z boson cases, the uncertainty in the luminosity
measurement far outweighed the other systematic un-
certainties in the measurement (see Table 1).

There is also a continuing controversy regarding the
actual value of the luminosity at the two detectors at
the Tevatron [78,79]. At both DØ and CDF, the inte-
grated luminosity is normalized by the total inelastic
cross section in pp collisions. CDF has made this mea-
surement [80] and uses it to normalize their luminosity.
DØ did not measure the total inelastic cross section,
and chooses to normalize to the world average, which is
∼ 6.2% higher than the CDF measurement [78]. This is
primarily due to a 2.8 standard deviation disagreement
between the CDF measurement and the E811/E710
measurements [81–84].

In the context of Run II, there are some general
concerns regarding the measurement of the total inte-
grated luminosity, particularly at high instantaneous
luminosity. New luminosity monitors are being in-
stalled at each detectors as part of the modifications for
Run II and CDF plans to repeat the measurement of
the total inelastic cross section. However, it is not clear
that this will result in a more precise determination of
L, and disagreement regarding the measured pp cross
section is likely to persist. Given the high precision
of the current W and Z cross section measurements,
increasing precision in the matrix element calculations
(now at NNLO [85]), and the expected abundance of
W and Z bosons produced during Run II (∼ 106 W
bosons and ∼ 105 Z bosons within the fiducial volumes
of each detector), we may consider using the rate of W
boson production to normalize the integrated luminos-
ity. In this subsection, we present a brief overview
of the magnitude of the experimental uncertainties in
the integrated luminosity using W boson production,
and discuss the requirements for such a measurement
to be competitive with standard luminosity measure-
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Table 1
Measurements of σ(W ) at the Tevatron. The three
quoted uncertainties are statistical, systematic, and
luminosity.

Detector Channel σ(W ) ·B (nb)
DØ(1A) W → eν 2.28± 0.02± 0.08± 0.10
DØ(1A) W → µν 2.02± 0.06± 0.22± 0.09
DØ(1B) W → eν 2.31± 0.01± 0.05± 0.10
DØ(1B) W → τν 2.22± 0.09± 0.10± 0.10
CDF(1A) W → eν 2.49± 0.02± 0.08± 0.09

ments and in what context it would surpass the current
precision.

3.1.1. σ(W )/L in Run I/II at DØ
As an example, we describe some details of how the

Run I measurement of the cross section for W boson
production at DØ would translate into a determination
of the total integrated luminosity.

Reversing the relationship between the integrated lu-
minosity (L) and the production cross section (σ(W ))
in the calculation done by DØ [78], we have the follow-
ing relation:

L =
N � � � � (1− f � � � )−N �

εA(1 +
� τ

� )σ(W )
(2)

where N � � � � is the number of W boson candidates
observed, f � � � is the fraction of candidates expected
from QCD multi-jet production, N � is the number of
candidates that are Z bosons in which one of the elec-
trons was unobserved, ε is the event identification effi-
ciency, A is the geometric and fiducial acceptance, A �

is the acceptance times branching ratio for W → τν,
and σ(W ) is the predicted cross section times branch-
ing ratio for producing W bosons.

Table 2 show the values of each of the quantities as
measured in Run I, and the fractional uncertainty each
would contribute to a measurement of L. The total
uncertainty from measured quantities alone is 2.2%.
Including a 4% uncertainty in the prediction of σ(W )
increases the total uncertainty to 4.6%.

We note two things: 1) even the Run I measurement
results in an uncertainty on L that is competitive with
the directly measured result‡ and 2) by far, the domi-
nant uncertainty is in the prediction of σ(W ).

In preparation for Run II, both DØ and CDF are
undergoing major upgrades to the detectors. For DØ,
this includes the addition of a solenoid magnet and
a complete replacement of the tracking system. The

‡Of course, we cannot reliably use the theory prediction without
the experimental confirmation from Run I!

Table 2
Uncertainties on the components of the measurement
of L if one used the components of the Run I mea-
surement of the W production cross section by DØ.

Component Value Error on L
f � � � 0.064±0.014 1.5%
ε 0.671±0.009 1.3%
A 0.465±0.004 0.9%

N � � � � 67078 0.4%
N � 621±155 0.3%
A � /A 0.0211±0.0021 0.2%
σ(W ) 22.2±0.9 nb 4%

total luminosity is expected to increase by a factor of
∼ 10. We now consider how each of the factors in Eq. 2
will be affected in Run II.

The background fraction for events from QCD multi-
jet production is dominated by systematics for the de-
tection of electrons. We do not expect the uncertainty
to decrease dramatically, nor do we expect the overall
background level to change much. It may be possible
to reduce the backgrounds and make them easier to
understand if we use the muon channel; however, no
serious study has been made on the subject.

The uncertainty on the lepton identification effi-
ciency is equal parts Z boson statistics and background
subtraction statistics and will scale by ∼ 1/

√
10 (we

assume an integrated cross section of 1 fb−1 in this
section). We expect the tracking efficiency to increase,
but the efficiency of the isolation and E/ � require-
ments may decrease due to multiple interactions and
decreased resolution due to the presence of the solenoid
in the Run II detector. Speculating, these effect may
balance each other, leaving an overall reduction in the
uncertainty by 1/3 to 0.9%.

The geometrical and fiducial acceptance will stay
approximately the same. The uncertainty is dominated
by the electromagnetic energy scale (0.00319 of 0.004)
whose uncertainty will be smaller in Run II due to an
increased number of Z boson events and extra han-
dles provided by a central magnetic field in the DØ
detector. Scaling the rest of the uncertainties with the
luminosity, we should be able to halve the uncertainty
on the acceptance to 0.5%.

The uncertainties in the expected number of Z can-
didates and the acceptance of electrons and muons
from W → τν are dominated by MC statistics and
can be shrunk to a negligible value.

Finally, the number of candidates will increase by
a factor of 10 just from the increased luminosity, by
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Table 3
Estimated values for the uncertainties in a measure-
ment of L in Run II.

Component Error on L
f � � � 1.5%
ε 0.9%
A 0.5%

N � � � � 0.08%
N � 0.0%
A � /A 0.0%
σ(W ) 4%

approximately a factor 1.12 from the increase of the
center of mass energy from 1.8 TeV to 2.0 TeV, and
by another factor of ∼ 2 if one includes the muon
channel, resulting in about 1.4×106 candidates, which
translates into a statistical uncertainty of about 0.08%.

Table 3 summarizes the expected experimental un-
certainties for measuring L in Run II at DØ. A mea-
surement of the luminosity will be dominated by the
background level and uncertainty and by the uncer-
tainty in the prediction of the cross section. Figure 43
shows how changes in the QCD background level and
uncertainty, and uncertainty in the cross section pre-
diction, affect the overall uncertainty in the resulting
luminosity. In each case, all quantities from experi-
ment were fixed to their Run I values except the one
being varied. The uncertainty on the cross section
was made negligible when considering the sensitivity
to the background level and uncertainty. We note
that decreasing the fractional uncertainty on the QCD
multi-jet background by a factor of 2 – 4 reduces the
luminosity uncertainty from 2.2% to 1.7 – 1.8% – a
factor of 0.3− 0.2. The relatively large uncertainty in
the background level (20%) translates into a significant
sensitivity to the background level itself. Essentially,
the trade-off for loosening the selection criteria and
allowing more background into the data sample is that
the background must be measured much more precisely
in order to maintain a small uncertainty. In Run II
(as in Run I), the best strategy to minimize the ef-
fect of the background uncertainty on the total cross
section measurement will be to minimize the level of
the background altogether – if the background can be
made negligible, the effect of the uncertainty of the
background on the cross section (no matter how large)
will also be negligible. The cross section uncertainty
continues to dominate the situation. However, if the
cross section uncertainty is kept to approximately the
size of the experimental uncertainty, the resulting lu-
minosity uncertainty is more than a factor of two better

than the Run I value.
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Figure 43. Impact of changing the overall background
level (b), the uncertainty on the background level (δb),
and the predicted σ(W ) in determining L. Except
when being varied, the experimental values are kept
to the Run I determinations. Except when varying the
uncertainty on the cross section, δσ(W ) is set to 0. The
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The solid line shows the current values of the luminos-
ity uncertainty at DØ and the dashed line shows the
uncertainty if the rate of W boson production was used
and σ(W ) was known perfectly.

3.1.2. Counting on the Prediction for σ(W )
If one determines the integrated luminosity using the

rate for W boson production, there are two fundamen-
tal issues that must be resolved. First, one must decide
that the calculation for σ(W ) is reliable in itself; that it
agrees with experiment. Second, one must determine
the uncertainty in the calculation, since it will likely
dominate the uncertainty in L.

The first issue is likely not problematic. If all cross
section measurements were normalized to a specific
σ(W ) calculation, then the worst impact of a change
in that calculation would be to modify all measure-
ments in the same manner. Additionally, the advan-
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tage would be that all measurements would be easy to
compare, since the controversy over the measurement
of the total inelastic cross section of pp collisions would
be circumvented.

The problem of determining the uncertainty on the
calculation is more difficult. Various ad hoc meth-
ods have estimated the uncertainty on σ(W ) to be
3 − 5% [78].The uncertainty in the cross section is
dominated (almost exclusively) by uncertainties in the
PDF’s which go into the calculation. (The uncer-
tainties due to higher order QCD and electroweak
corrections are likely much smaller than these.) Two
efforts to understand the uncertainties in the PDF’s
quantitatively are described in the report of the Work-
ing Group on Parton Distribution Functions [2].

3.1.3. Conclusion
We have described the current expectations for mea-

suring the integrated luminosity in Run II using the
rate for W boson production. The experimental un-
certainties, totaling ∼ 2.2%, are dominated by the
uncertainty in the background from QCD multi-jet
interactions. However, the total uncertainty is dom-
inated by an ill-defined uncertainty on the prediction
for the production cross section for W bosons. With
sufficient progress in the continuing effort to quantify
this uncertainty, we may be able to reliably determine
the total integrated luminosity in Run II using the rate
for W boson production to ∼ 3− 4%.

3.2. Determination of the Weak Boson p � Pro-
duction Spectrum

During Run II at the Tevatron, CDF and DØ will
obtain the largest data set of e+e− pairs resulting from
via pp̄→ γ∗/Z to date, pushing the analysis of vector
boson production characteristics over the edge from be-
ing limited by statistical uncertainties, to being limited
by systematic uncertainties. The di-electron final state
provides two important experimental handles. Elec-
trons themselves are among the best-measured objects
at either detector, with far better resolution in en-
ergy and position than most final-state high-p � objects
(such as jets or muons). Additionally, the di-electron
final state provides complete kinematic information
about the hard collision; the four-momentum of the
Z/γ∗ state is known unambiguously. Since the elec-
troweak character of the decay to di-electrons is gener-
ally uncorrelated with the QCD characteristics of the
production of the vector boson state, di-electron pro-
duction in pp̄ collisions via the Drell-Yan production
is a sensitive probe for investigating many aspects of
QCD. The rapidity (y) distribution is the Drell-Yan
analog to deep inelastic scattering structure function,
providing additional constraints on PDF’s. The trans-
verse momentum (pT) distribution is sensitive to pre-

dictions from standard perturbative QCD at high-pT

(∼ Q2) and to predictions from soft-gluon resumma-
tion calculations at low-pT [86,87]. Additionally, the
low-pT region is sensitive to non-perturbative effects
not calculable in pQCD. These effects are included
via a universal form factor, not unlike PDF’s, whose
parameters must tuned to data.

In addition to the intrinsic benefits of precision mea-
surements of QCD, there are practical benefits for
other measurements at the Tevatron. In the low-pT

region, where the cross section is highest, uncertainties
in the phenomenology of vector boson production have
contributed to the uncertainty in the measurement of
the mass of the W boson (MW) [88,89]. Diboson,
top quark, and Higgs boson production all have sin-
gle and di-electron backgrounds from W and Z boson
production that will be more constrained through a
precise measurement of Z/γ∗ production properties.
Also, the universality of the resummation approach re-
quires further experimental testing, with implications
ranging from the impact on the precise determina-
tion of MW, to the production of Higgs bosons and
di-photons [90,10].

High mass Drell-Yan e+e− pairs are experimentally
distinctive: the electrons typically have large ET’s, are
separated from each other in η and φ, and tend to
be separated from jets and other activity in an ev-
ent. In Run I, CDF and DØ collected such events
with electrons in the central (|ηdet| < 1.1) and forward
(1.1 < |ηdet| < 2.4/2.5) regions, providing a coverage
in the e+e−-pair rapidity of up to |y| ∼ 3. Since
the online and off-line electron identification efficien-
cies are comparable (for both experiments), additional
off-line requirements primarily enhance the rejection
of background from QCD multijet events that were
mis-measured as electrons. At CDF, the most power-
ful discrimination is provided by tracking and precise
electron shower centroid measurements. To cope with
the large jet backgrounds in the forward detector re-
gion, CDF developed the SVX-Plug tracker [91] and
improved the matching of tracks in the vertex tracker
with calorimeter shower positions during Run I. Apply-
ing such forward tracking techniques to both e’s of a
pair reduced the backgrounds from about 10% to a per-
cent or less. At DØ, the most background rejection was
obtained by additional isolation and shower-shape re-
quirements, reducing the backgrounds from ∼ 10−15%
to 4 − 7%, depending upon fiducial region. With the
addition of central magnetic field and enhanced track-
ing in the Run II detector, the background is expected
to be reduced even further.

To allow direct comparisons of experimental results
with QCD predictions, the experimental results are
fully corrected for detector acceptance, experimental
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efficiencies, and detector resolution effects. For the
Run I data, CDF and DØ used Monte Carlo simu-
lations to determine the corrections for the detector
efficiency, acceptance, and resolution as a function of
p � and y. CDF generated the di-electron signal us-
ing PYTHIA [92], processing them with the CDF de-
tector simulation and reconstruction programs. Ad-
ditionally, they used PHOTOS [93] to simulate final
state QED radiation from the γ∗/Z → e+e− vertex.
PYTHIA and the detector simulation were tuned to
obtain satisfactory agreement with data [94]. DØ
generated γ∗/Z events using the resummed prediction
from LEGACY [95], smearing the decay electrons with
a parameterized detector simulation which included
final-state QED radiation corrections. The parameters
and resolutions in the detector simulation were tuned
to obtain agreement with data [96].

In general, the predictions for vector boson produc-
tion do not yet include QED effects, therefore the
experimental corrections must attempt to account for
them. At a minimum, final state QED radiation must
be included because the effects are large [97], and CDF
and DØ included such corrections in their Run I mea-
surements. As there is yet no numerical implementa-
tion of the QED corrections analogous to the QCD soft
gluon resummation formalism, initial state QED effects
have not been considered. Initial state QED radiation
effects in pT are expected to be similar to those in
QCD, but since the coupling is much smaller, the pT

distribution due to QED effects should be much softer.
It is expected that resummation of the initial state
soft-photon emission can be implemented similarly to
the soft gluon case [97].

Using 110 pb−1 e+e− data from Run I, both CDF
and DØ have measured the Drell-Yan cross section
dσ/dpT [94,96] and CDF has measured dσ/dy [98,99].
For both CDF and DØ, the measurement error at the
peak of the pT distribution (∼ 3 GeV/c) was ∼ 6%.
The measurement error at |y| = 0 was ∼ 5%. The
combined efficiency and acceptance for these measure-
ments was ∼ 33%.

The dominant systematic uncertainties in these
measurements are the efficiency and background
corrections. Generally, the uncertainty in shape is
more problematic than the uncertainty in overall nor-
malization. As mentioned, the level of background is
expected to be reduced in Run II with the enhanced
tracking available in both detectors. This will also
reduce the effect of the normalization-uncertainty on
the final measurement. The uncertainty in the shape of
the background is dominated by statistics from events
that satisfy multijet and direct-γ triggers, which also
satisfy the kinematic and fiducial requirements nec-
essary for the Z/γ∗ analysis. Again, the enhanced

Figure 44. The expected CDF Run II measurement
error on dσ/dy of e+e− pairs in the mass range 66 –
116 GeV/c2. “Data/Theory” has been arbitrarily set
to unity. The error is for 2 fb−1.

statistics of Run II should allow this uncertainty to by
reduced. The overall electron identification efficiency is
well-known in both experiments–δε ∼ 0.5%. The shape
as a function of pT is dominated by the isolation re-
quirement being spoiled by jet activity nearby the elec-
tron cluster. Understanding this effect requires either
excellent GEANT-type Monte Carlo or a great number
of di-electron events from single-electron triggers, so
one can investigate the effects of hadronic activity on
electron isolation in an unbiased manner. We expect
to see improvements in both areas in Run II, hopefully
reducing the uncertainty in the shape of the efficiency
as a function of pT from ∼ 3− 5% to ∼ 1%.

The expected Run II measurement errors for the
dσ/dy and dσ/dPT measurement can be estimated
from the Run I measurement errors by assuming that
the statistical (“Stat”) and systematic (“Syst”) errors
scale as follows:

Stat→ 1/ 2
√
Nev

Syst→ 1/ 4
√
Nev

where Nev is the number of events in a bin. The scaling
of the systematic uncertainties should be considered a
rough parameterization. Scaling the Run I uncertain-
ties from CDF to an integrated luminosity of 2 fb−1,
we obtain predictions for the total measurement un-
certainty in dσ/dy (Fig. 44) and dσ/dpT (Fig. 45).

With an expected precision of a few percent, the
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Figure 45. The expected CDF Run II measurement
error on dσ/dpT of e+e− pairs in the mass range 66 –
116 GeV/c2. “Data/Theory” has been arbitrarily set
to unity. The error is for 2 fb−1.

Run II data can provide even more stringent con-
straints on all aspects of our understanding of Z/γ∗

productions, with important implications on our un-
derstanding of resummation in pQCD, and the preci-
sion determination of MW. The precision of the Run II
dσ/dy and dσ/dpT measurements will most likely be
limited by systematic uncertainties from corrections
to the detector acceptance/efficiency and resolution.
These uncertainties will be constrained through the im-
proved accuracy of Monte Carlo detector simulations,
and the additional data available in general during
Run II.

3.3. Offstream Searches for Vector Bosons
3.3.1. Introduction

Since their discovery in 1983 [100–103], W and Z
bosons have been studied at hadronic colliders only via
their leptonic decays. As a matter of fact the hadronic
decays of these particles are generally so difficult to
separate from the huge QCD backgrounds that, after
the extraction of a nice mass bump in the jet-jet mass
distribution by the UA2 collaboration in 1987 [104,
105], they have laid dormant for quite a while as an
electroweak physics topic.

Things have started to change with the increase of
collider luminosity and dataset size. During Tevatron’s
Run I, hadronic W decays have been successfully used
by CDF and D0 in the discovery and measurement
of the top quark properties both in the single lepton

and fully hadronic final states, and a handful of jet-jet
masses peaking at 80 GeV have been extracted from
a subset of high-purity tt̄ events (see Fig. 46). More
recently, a signal of Z decays to b-quark pairs has
emerged in the CDF data (Sec. 3.3.3).

With Run II sample sizes it will be possible to
search for more such hadronic signals, and some of
them are expected to start becoming useful tools for
other physics advances. In fact, their potential as
calibration tools for the jet energy measurement is
high, provided that they can be collected by unbiasing
triggers. This seems particularly likely in the case of
Z → bb̄ decays, where the background has been shown
to be reducible to a manageable size and the hardware
tools for collecting them with good efficiency and small
bandwidth concessions are now available; moreover, for
b-quark jets the absolute energy scale cannot be fixed
by photon-jet balancing techniques, due to the rarity of
events with a photon recoiling against a single b-quark
jet: a Z peak may then really be our best chance for
that purpose. Hadronic W decays will also be an ideal
calibration tool in tt̄ events, but efforts need to be spent
on finding their signal in independent data samples.
These may be provided by diboson production pro-
cesses, where triggering and background issues are less
problematic.

3.3.2. Hadronic Decays of W Bosons
Searches for a W mass signal in inclusive jet triggers

have been fruitless in Run I data. With respect to
the lower energy Sp̄pS collider, the Tevatron’s higher
center-of-mass energy is a disadvantage for once, be-
cause in the face of a four-fold increase in signal cross
section the background from QCD processes increases
by an order of magnitude, due to its steep behavior
with respect to parton x. Moreover, no dedicated
low-E � jet triggers were devised either at CDF or DØ
during Run I, given the experiments’ focus on the high
energy frontier; at the very end of the run, however, a
sector of CDF’s central tracking chamber became in-
operative due to a broken wire, which allowed 1.9 pb−1

of data to be collected by a high-bandwidth 12 GeV
dijet trigger. The data thus gathered did not allow
the extraction of a W peak either, but lends itself to
fruitful extrapolations to Run II.

It seems reasonable to investigate the collection of
events with very low jet E � by special low-luminosity
runs, which might become an attractive option in the
event of temporary inoperativeness of tracking detec-
tors. Here we examine a scenario where CDF II or DØ
gathers some 100 pb−1 of unprescaled data collected
with a trigger requiring two calorimeter towers above
4 GeV at Level 1 and two jets with E � > 10 GeV
at Level 2, back-to-back in phi –about the smallest
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Figure 46. The jet-jet mass distribution of untagged
jets in the very high purity single lepton tt̄ candidates
sample collected by CDF requiring two additional b-
tagged jets.

thresholds that do not saturate the bandwidth. About
two million W/Z → jj decays could be then collected,
which would be reduced to 200,000 after optimized
kinematic cuts requiring two central back-to-back jets
and little extra-jet activity. Toy Monte Carlo studies
suggest that in such a scenario the W mass could be
fit with a ∼ 0.5 GeV uncertainty, provided the avail-
ability of a prescaled sample with looser requirements
at Level 2: this would yield an understanding of the
absolute jet energy scale of the detectors to better than
1%. Such a dataset could then clearly be used also
for excellent tests of optimization of jet algorithms,
and thus offer benefits to any search for hadronically
decaying massive objects.

3.3.3. Z Decays to b-Quark Pairs in Run I
Thanks to the several million Z decays to b-quark

pairs collected by the LEP I and SLD experiments
since 1992, the physics of these decays is extremely
well studied and understood. At a proton-antiproton
collider that particular process had not been identified
before, though; therefore the extraction of a signal in
Run I data was interesting in its own right. Moreover,
the knowledge of how to extract a Z peak enables a
careful design of a dedicated trigger for Run II, which
may allow us to collect a large sample of these events,

from which the mass distribution can be fit and thus
insight can be obtained on the absolute energy scale for
b-quark jets, substantially reducing one of the critical
sources of systematic uncertainty in the top quark mass
measurement.
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Figure 47. Top: the Z → bb̄ peak in the signal sample;
bottom: a signal-depleted sample is used to extract the
background shape.

A Z → bb̄ signal was extracted in Run I CDF
data using kinematic tools and b-quark vertex tagging.
Starting from a dataset of about five million events
enriched of b-quark decays collected by a single muon
trigger, a very tight kinematic selection was devised,
which increased the signal to background ratio by three
orders of magnitude.

The main background to the Z decay to b quarks is
due to direct QCD production of a bb̄ pair, while non-b
backgrounds yielding muons can be completely elimi-
nated by requiring the presence of a secondary vertex
in each of the two jets; this cut also reduces the flavor
excitation and gluon splitting contributions to b quarks
in the sample quite effectively. Most of the direct bb̄
pairs are produced at the Tevatron by a gluon fusion
process, whose high color charge in the initial state
and color flow topology are distinctive characteristics.
To exploit the smaller probability of QCD radiation
in the signal, the two leading jets were required to be
back-to-back in φ, and the sum of all other calorime-
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ter clusters in the event was required to be smaller
than 10 GeV. These cuts selected 588 events, whose
jet-jet mass distribution was fit to the sum of QCD
background and Z decay to yield a signal of 91 ± 30
events, with a S/N ratio at the Z peak equal to 1/3;
the fit resulted in a Z mass of 90.0 ± 2.4 GeV (see
Fig. 47). If the same analysis should be replicated with
20 times more statistics and no detector improvements,
this would yield a relative error in the b-jet energy scale
smaller than 1%. The picture could be even rosier as
far as statistics goes, due to the extended lepton cover-
age and improved silicon tracking the Run II detectors
will be endowed with, but the strong bias due to the
triggering lepton will make these findings of difficult
use for generic b-quark jets.

Besides its possible use as a calibration tool, how-
ever, a Z → bb̄ peak provides a fine testing ground for
algorithms designed to improve the jet energy measure-
ment for b jets, which is one of the critical points for
the discovery of an intermediate mass Higgs boson in
Run II. The bb̄ final state is the dominant one in Higgs
boson decay if M � < 135 GeV/c2 [106]. Our ability to
extract this particle from the large QCD background
in Run II (for instance in the Wbb̄ final state, when
associated WH production is sought) will therefore
depend critically on the resolution we can attain on
the Higgs boson mass as reconstructed from the mea-
sured b-quark jet energies: both the possibility to see
a bump in the mass spectrum of jet pairs associated to
a leptonically decaying W bosons, and the alternative
option of applying a mass window cut as a selection
tool for these events, will strictly depend on the actual
mass resolution.

The expected resolution for a generic jet-jet reso-
nance at CDF and D0 was roughly σ �

jj = 0.1M � � in
Run I. A relative improvement of this number by 30%
would significantly extend [106] our discovery reach
for the Higgs boson in Run II. In order to achieve
that improvement we must study in detail the char-
acteristics of b-quark jets emitted in the Higgs decay,
and use to their utmost the large amount of available
information provided by the various detector compo-
nents DØ and CDF II are made up of. For example,
three-dimensional tracking in the new SVX II detector
may allow CDF II to infer the momentum of the escap-
ing neutrinos in semileptonic b-quark decays, greatly
improving the energy measurement of the resulting
jets; this plan will work well in Run II, given the larger
acceptance for charged leptons from semileptonic de-
cays provided by the new detectors. Furthermore, the
possibility of measuring track momenta to higher ra-
pidity will allow a fruitful use of tracking information
to improve the calorimetric measurement of jets.

A detailed study of the observable quantities of b-

quark jets produced in Z → bb̄ decays followed by one
semileptonic b→ µX decay have been shown to allow
a sizable reduction of the width of the reconstructed
bb̄ peak. The quantities found useful for this purpose
in the CDF analysis were the muon momentum, the
projection of missing transverse energy along the jet
axes, and the charged fraction of the jets.

The muon momentum is needed in the correction of
jets containing a semileptonic decay of b quarks, be-
cause the minimum ionizing muons do not contribute
linearly to the energy measured in the calorimeter.
The missing E � , projected along the jet directions in
the transverse plane, provides useful information on
the amount of momentum taken away by the neutrino
in the muon jet and on possible fluctuations of the
energy measurement in both the muon and the away
jet. The charged fraction of the jets, defined as the
ratio between the total momentum of charged tracks
belonging to a jet and the energy measured in the
calorimeter, also helps reducing the uncertainty in the
energy measurement.

By properly accounting for the value of these observ-
ables, it was possible to reduce the relative uncertainty
in the dijet mass measurement, σ � /M � � , by nearly
50% (see Fig. 48).

If the alternative plan (described in the following
section) based on collecting Z → bb̄ decays by trig-
gering directly on secondary vertices in jets at Level 2
should fail, CDF II will anyways be able to observe a
peak of several thousand events in the inclusive lep-
ton datasets by simply replicating the Run I analysis.
These peaks will not allow a precise calibration tool for
inclusive b-quark jets, given the biasing semileptonic
decay of one of the two jets, but they will anyways be
extremely useful as a testing ground for the algorithms
now under development which aim at reducing the jet
energy resolution.

3.3.4. Z Decays to b-Quark Pairs in Run II
A strategy to collect Z → bb̄ events in Run II has

been studied having in mind the CDF trigger config-
uration. We tried to keep the trigger requirements
as simple as possible and optimize them in order to
have acceptable trigger rates (less than 2% of the total
bandwidth at each level) and maintain a good signal
efficiency.

Most Z → bb̄ events should contain two recon-
structable secondary vertices in the final state. In
Run II it will be possible to trigger on secondary ver-
tex information. Exploiting this feature, it should be
possible to collect a sample of Z → bb̄ events without
particular requirements on the b decay. One purpose
of this dataset is to provide a sample to calibrate the
calorimeter energy scale for jets containing b quarks,
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PYTHIA Z → bb: Mass Reconstruction
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Figure 48. The four Gaussian fits show the improve-
ment of the mass reconstruction for simulated Z → bb̄
events (Pythia V5.7, CDF detector simulation) when
the observable characteristics of the b-quark decays are
properly taken into account in the mass reconstruction.

which may limit our ability to measure the top mass.
Therefore the trigger path should bias the energy scale
measurement as little as possible.

At Level 1 the XFT (eXtremely Fast Tracker) in-
formation will be available: transverse momentum P � ,
azimuthal angle φ and charge sign of particles crossing
all of the Central Outer Tracker (COT) layers. We
require the presence of two central high P � tracks in
opposite hemispheres. Cuts are chosen on the track
P � and ∆φ to maximize the statistical significance
(S/
√
B). The track P � cuts are 6 GeV and 4 GeV,

with ∆φ > 150
�

.
At Level 2 the rate is reduced by requiring the tracks

to have a finite impact parameter. The SVT (Silicon
Vertex Tracker) processor will provide this informa-
tion. The best significance is found by requiring two
SVT tracks with 120 µm < |d| < 1000 µm.

The computing power of the Level 3 processors
should allow the reconstruction of secondary vertices
online. We require two jets, each with uncorrected
E � > 10 GeV in a cone of radius R = 0.7, and check
that the jets contain two displaced vertices.

A summary of signal efficiency, trigger cross section
and trigger rate at the three trigger levels is reported

in Table 4 for a typical instantaneous luminosity L =
1.4 · 1032cm−2s−1.

Table 4
Summary of the Z → bb̄ trigger efficiency, cross section,
and rate at each level.

Trigger εS (%) σT RT (Hz)

Level 1 17.0 ± 0.2 (5.7± 0.3) µb 800 ± 42
Level 2 3.10± 0.03 (32± 3) nb 4.4± 0.4
Level 3 2.4± 0.1 (3.2± 0.9) nb 0.5± 0.1

Since σ(pp̄ → Z → bb̄X) ' 1 nb, about 2 · 106

Z → bb̄ events will be produced in Run II, assuming
2 fb−1 of data collected in two years. We expect to
collect 48,000 signal events in a total of about 6.4 · 106

with this trigger, corresponding to a S/B of 0.0075 and
a significance S/

√
B ' 19.

Figure 49. M � � distribution expected from Run II:
signal+background.

It is also advantageous to require the presence of no
additional jets with E � > 10 GeV in the event, either
at trigger level or at a pre–analysis level. This would
increase the signal fraction to 0.013 and the significance
to S/

√
B = 24. We simulated the signal extraction

procedure under these assumptions. We searched for
the Z → bb̄ signal in the jet–jet invariant mass distri-
bution M� � . We expect to see an enhancement cor-
responding to the Z mass, since the statistical signifi-
cance of the signal is high. Outside of the signal region
the M � � spectrum should be approximately described
by a decreasing exponential.

The PYTHIA Monte Carlo is used to model the
Z → bb̄ invariant mass spectrum. The backgroundM � �
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distribution expected for the background is inferred
from generic Run I dijet data by assuming that the
request of secondary vertices does not modify its shape.
The M � � distributions for signal and background nor-
malized to 2 fb−1 have been added (see Fig. 49).

Figure 50. Background-subtracted M � � distribution
for Z events obtained from a pseudo-experiment.

Because of the very low S/B ratio, we cannot dis-
tinguish by eye the signal peak in Fig. 49. We con-
ducted 1000 pseudo-experiments, varying every time
the bin content according to a poissonian distribu-
tion with mean equal to the bin content itself. For
each pseudo-experiment the region outside the Z peak
was fitted with a decreasing exponential. The value
of this function was subtracted, bin by bin, from the
total spectrum. The results obtained in one of these
pseudo-experiment subtractions is shown in Fig. 50,
together with a gaussian fit to the excess found. With
this method we typically obtain for the jet-jet invari-
ant mass peak position M � � � � = 84.0 GeV/c2, with a
statistical uncertainty of 1.5 GeV/c2 on M � � � � .§

The interval of ±2σ around the Z peak
(55 GeV/c2 < M � � < 115 GeV/c2) contains about
93% of the signal events and 25% of the background
events. Therefore in this region S/B = 0.05 and the
statistical significance is S/

√
B = 44.

The error on the Z mass can be directly translated
into an error on the b-jet energy scale. Measuring the
Z mass with an error of the order of 1.5 GeV/c2 will
allow to determine the b–jet absolute energy scale with
an uncertainty of 1.7%.

§The jet energy corrections applied here are not optimized for
b jets, whose higher mass and decay properties are sensibly
different from those of generic light-quark and gluon jets: the
invariant mass peak is thus about 7 GeV lower than the true Z
mass.

3.3.5. Other Hadronic Signals
Besides its interest for the study of trilinear gauge

boson couplings, discussed in Sec. 4, associated pro-
duction of two vector bosons yielding a leptonic and
a hadronic decay may provide additional handles for
the physics of hadronic resonances, both because of
the ease of collecting these events with good efficiency
in high-P � lepton triggers and because of the larger
signal to background ratio with respect to single boson
production processes, due mainly to the reduction of
background processes with gluons in the initial state.
WW production is the best example: in a sample

of 5 fb−1, for instance, about 3000 pp̄→ WW → lνjj
events can be collected by applying standard cuts on
the leptonic decay products and requiring two jets with
uncorrected E � > 15 GeV; the signal to noise ratio
is then close to 1/40 before any optimized selection.
Thence an observation of the W peak in the dijet mass
distribution will be relatively easy to obtain. System-
atic effects in the mass fits due to the low S/N ratio
may make this sample of little impact as a source of
knowledge of jet energy scale when compared to the
high-purity W → jj samples that single lepton tt̄ de-
cays may provide; but the signal may still be extremely
useful for the study of jet resolutions.

Another process that will be likely observed in
Run II is associated WZ production with a subsequent
leptonic decay of the W boson and a decay of the
Z to b-quark jets. In 5 fb−1 about 500 such events
can be collected by the lepton triggers, from where
secondary vertex tagging can considerably increase the
signal purity. Despite its small size, this signal may be
of fundamental importance in checking systematic un-
certainties in the standard model Higgs boson search,
which will mainly focus on the very same dataset with
very similar analysis cuts.

Finally, the possibility of collecting Z → bb̄ in pho-
ton triggers has been investigated. Zγ production has
a small cross section –about 2.5 pb for a photon with
E � > 10 GeV and two b-quark jets (see Fig. 51)–
but the heavy flavor decay provides a quite distinc-
tive signature, and the process could be easily put in
evidence if a sufficiently low trigger threshold were set
on the photon transverse energy, or alternatively if a γb
trigger could be devised. The advantage of the process
producing an additional photon over inclusive Z pro-
duction lays in the suppression of the irreducible back-
ground from direct QCD bb̄ production: since initial
state photons can only be present in quark-antiquark
annihilation diagrams, at Tevatron energies the bb̄γ
background is suppressed by roughly an order of mag-
nitude more than the Z signal with respect to the
searches in inclusive bb̄ samples. It is however difficult
to devise an unprescaled trigger capable of a sufficient
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Figure 51. The cross section times branching ratio
for Zγ production with subsequent Z → bb̄ decay,
for different choices of PDF sets, computed with the
Baur-Berger-Zeppenfeld generator [107].

efficiency for the signal while maintaining the total rate
at an acceptable level. In particular, a γb trigger would
have to require at Level 1 both a photon candidate and
one or two charged tracks; the tracks and the photon
would then need to be separated in azimuthal angle,
to reduce the rate of fake photon signals from QCD
events. There is currently no plan to devise such a
trigger in CDF II or DØ , while the lowest unprescaled
photon triggers will collect events with E � �

> 25 GeV,
where the γbb̄ cross section is only 0.6 pb. With 5 fb−1

it will be relatively easy to isolate a signal of one or two
hundred events over a similarly sized background, but,
given the small size, its exploitation appears dubious.

3.4. Lepton Angular Distributions in W Boson
Decay

Next-to-leading order perturbative QCD predicts
that in W → lν decays an angular distribution of
(1 ± α1 cosθ∗ + α2 cos2θ∗) [108] should be observed,
where θ∗ is the polar angle of the decay lepton in the
Collins-Soper frame [109]. In the presence of QCD
corrections, the parameters α1 and α2 are functions of
p

�
� , the W boson transverse momentum.
The measurement of α2 serves as a probe of NLO

QCD, using the well understood W -fermion coupling.
By probing the spin structure of W production, this
measurement provides another method that is indepen-
dent of purely QCD analyses, while adding to the list of
measurements using vector bosons to study NLO QCD.
Moreover, the measurement of the angular distribution
of the decay leptons is also of importance for the W
mass measurements, because the next-to-leading or-
der QCD corrections to the angular distribution are a

non-negligible contribution to the W mass.
The measurement of the angular distribution of elec-

trons from W bosons obtained with Run I data col-
lected by DØ [110,111] is statistically limited (see
Fig. 52). While a calculation that includes QCD effects
is preferred over one that does not, this preference is
not strong enough to exclude a p � independent angu-
lar parameter α2. With the next collider run starting
in the near future, it is worthwhile looking at the sen-
sitivity of this measurement in Run II. In the following
discussion we will estimate the size of statistical and
systematic errors to this measurement with 2 fb−1 in
Run II.
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Figure 52. DØ Run I result: the measured α2 as a
function of p � with combined statistical and system-
atic errors compared to the NLO QCD calculation by
Mirkes (curve) and calculation in the absence of QCD
effects (horizontal line). The statistical errors alone
are shown as horizontal ticks.

The expected statistical errors in the determination
of α2 should simply scale like the inverse of the square
root of the number of events. We consequently need
to calculate the expected number of W boson events
under Run II conditions. We get a factor of 57 in W
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boson statistics which breaks down as follows (see [77]):

N �
�

� � � ���

N �
�

� � � � =f � � � × f2 � 0 TeV ×
N � +N �

N �

× ε � � � � � � � 


ε � � � � � � � � � 


(3)

where f � � � = 20 indicates the increase in luminosity,
f2 � 0

� � � = 1.2 indicates the increase in W cross section
due to the increase of the center-of-mass energy from√
s = 1.8 TeV to 2 TeV, (N � +N � )/N � = 2 is the addi-

tional statistics gained by including the muon channel,
and

ε � � � � � � � 


ε � � � � � � � � � 
 =
0.95

0.8
(4)

is the increase in efficiency due to tracking capabilities
of the upgraded DØ detector.

The statistical errors of the Run I measurement are
therefore scaled by 1/

√
57, as shown in Fig. 53. The
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Figure 53. Estimated sensitivity of the α2 measure-
ment obtained by scaling statistical errors to Run II
conditions.

statistical uncertainties to this measurement become
quite small, and a further look at systematic errors
is therefore necessary. Table 5 shows a summary of
statistical and systematic errors for Run I and Run II.
Since the modeling of the hadronic recoil is done from
Z data, the error due to the hadronic resolution will
scale with Z statistics up to a point. The estimate of

this error is done by scaling the number of Z events
by a factor of

√
28.5 (the same as for W events but

excluding muons). The error on the hadronic response
will also improve with increased Z statistics. Conse-
quently, the largest errors left are the ones due to the
QCD multi-jet background and the electromagnetic
scale. It will be of crucial importance for this and other
electroweak measurements to better estimate the QCD
background. This goal can partially be reached by
taking more events with a QCD monitor trigger [111].
Of course, it would be best if the QCD background
fraction could be reduced even further. At this point
it is not obvious if this is feasible since the current set
of electron identification cuts is already very efficient
in reducing this background. A Monte Carlo program
that correctly models QCD multi-jet events including
a realistic detector model could also help in better es-
timating the shape of this background. For the low p �

region, the dominant error will be the electromagnetic
scale. There is however currently no good estimate by
how much this error will be reduced.

Table 5
Central values and statistical errors for α2 and sys-
tematic errors due to backgrounds, the hadronic en-
ergy scale and resolution, and the choice of α1. All
systematic errors are for Run I if not otherwise noted.

pT [GeV] 0− 10 10− 20 20− 35 35− 200
mean pT [GeV] 5.3 13.3 25.7 52.9

α2, Run I 1.07 0.82 0.49 0.10
±0.13 ±0.25 ±0.37 ±0.37

α2, Run II 0.98 0.89 0.68 0.24
Stat. errors, e ±0.024 ±0.047 ±0.069 ±0.069

e+µ ±0.017 ±0.033 ±0.049 ±0.049
total syst error ±0.08 ±0.09 ±0.12 ±0.12
QCD ±0.04 ±0.05 ±0.09 ±0.07
Z ±0.01 ±0.02 ±0.02 ±0.04
top ±0.00 ±0.00 ±0.00 ±0.02
EM scale ±0.06 ±0.05 ±0.03 ±0.04
had scale ±0.03 ±0.01 ±0.04 ±0.04
had. resolution ±0.02 ±0.02 ±0.05 ±0.06
had. res. Run II ±0.004 ±0.004 ±0.009 ±0.011
α1 ±0.01 ±0.05 ±0.03 ±0.03

In the current measurement we had to fix α1 to the
value predicted by the QCD calculation since even after
summing over both W signs we are slightly sensitive
to α1 due to acceptance effects. The error due to this
choice for α1 was estimated by setting α1 = 2.0, the
value predicted by the V −A theory in the absence of
QCD effects (see Table 5). This error is non-negligible.
Since the central magnet in Run II will allow for sign
identification of electrons, α1 and α2 could thus be
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measured simultaneously, eliminating the need for the
above assumption for α1. This will reduce the error
due to the choice of α1. While this is a nice extension
of this measurement, it is not clear at this point by
how much it will numerically improve the significance
of the measurement of α2.

In the above estimate of the errors, the binning in
p

�
� used for the Run I measurement was kept un-

changed. With larger statistics, one would probably
choose a finer binning in p

�
� , allowing for bins with

larger mean p
�

� . This would increase the sensitivity in
the area where the deviation of the angular distribution
due to QCD effects is most pronounced.

The Monte Carlo used in the current analysis, which
was originally developed for the measurement of the W
mass [88] at DØ, treats hadronic jets as point particles
and the hadronic recoil is treated as a single jet. This
is clearly a simplification of the true processes involved
and a real next-to-leading order event generator would
be useful.

In addition to the experimental improvements dis-
cussed thus far, this measurement will be sensitive to
W production models. These models have to be con-
strained by independent measurements.

To summarize, in Run II the measurement of the
angular distribution of electrons from W boson de-
cays will be systematically limited. While the recoil
response and resolution will improve with increased Z
statistics, the estimate of the QCD background frac-
tion and shape becomes a limiting factor. It is difficult
to estimate by how much the other dominant error,
the error due to the uncertainty of the electromagnetic
scale, will be reduced in Run II. Other improvements
not quantified here are expected from a finer binning
in p � and sign identification of electrons.

4. Vector Boson Pair Production and Trilin-
ear Gauge Boson Couplings – Prospects for
Run II§

The Standard Model of electroweak interactions
makes precise predictions for the couplings between
gauge bosons due to the non-abelian gauge symme-
try of SU(2) � ⊗ U(1) � . These self-interactions are
described by the triple gauge boson (trilinear) WWγ,
WWZ, Zγγ, ZZγ and ZZZ couplings and the quartic
couplings. Vector boson pair production provides a
sensitive ground for direct tests of the trilinear cou-
plings. Deviations of the couplings from the SM values
would indicate the presence of new physical phenom-
ena.

The purpose of this section is to present a brief
overview of recent theoretical advances in understand-

§Contributed by: U. Baur, H.T. Diehl and D. Rainwater

ing di-boson production in hadronic collisions, and to
highlight Run II opportunities for studying the physics
of vector boson pair production. Because of the large
anticipated size of the data sample,

∫
Ldt = 2 fb−1,

interesting processes and final states that were not
studied in Run I will become available. These are
discussed, as well as prospects available in extensions
of the Run I Wγ, WW , and WZ analyses to Run II.
This is meant to be an improvement over the forecasts
of the TeV 2000 Report [77], which was written in 1995
before we had the benefit of having performed the
Run Ib analyses. Indeed, some of the TeV 2000 Re-
port’s prognostications for Run II limits were achieved
in Run I.

We begin with a brief summary of the trilinear
gauge boson couplings and how they are parameter-
ized. Next, we give a short description of new theo-
retical developments. Following that, we summarize
the anomalous coupling limits obtained in Run Ia and
Run Ib, and compare the Run Ib results with what
we expected we would obtain, based on a simple ex-
trapolation from Run Ia. This exercise in hindsight
provides both a calibration for, and a cross-check of,
the extrapolation method. The subsequent section
provides expectations for anomalous coupling limits
from the Run II analyses based on extrapolation of the
Run I analyses to higher integrated luminosity. Next,
we provide comments on some Run II analyses, and,
lastly, discuss new channels and analyses which will
become feasible in Run II, in particular the prospects
for measuring the ZZV couplings via ZZ production.

4.1. Trilinear Couplings
The WWV (V = γ or Z) vertices are described by a

general effective Lagrangian [112,113] with two overall
couplings, g � � � = −e and g � � � = −e · cot θ � , and
six dimensionless couplings g

�

1 , κ � , and λ � (V = γ
or Z), after imposing C, P, and CP invariance. The
W−� (q)W+� (q̄)V � (p) vertex function (where all mo-
menta are outgoing, p + q + q̄ = 0) in presence of
non-standard couplings is given by:

Γ
�

� �
� � �

g � � �
= q̄

�

g
� �

(
g

�

1 + κ � + λ �
q2

M2�

)

− q
�

g
� �

(
g

�

1 + κ � + λ �
q̄2

M2�

)

− (q̄
� − q �

) g
�

�
(
g

�

1 +
λ �

2

p2

M2�

)

+ (q̄
� − q �

)
λ �

M2�
p

�

p
�

.

(5)

Here, M � is the W -boson mass. Electromagnetic
gauge invariance requires that g

�

1 = 1, which we as-
sume throughout this paper. The SM Lagrangian is
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obtained by setting g
�

1 = g
�

1 = 1, κ � = 1 (∆κ � ≡
κ � − 1 = 0) and λ � = 0.

A different set of parameters, motivated by SU(2)×
U(1) gauge invariance, had been used by the LEP
collaborations [114] prior to 1998. This set consists
of three independent couplings α � � , α ��� and α � :
α � � ≡ ∆κ � − ∆g

�

1 cos2 θ � , α ��� ≡ ∆g
�

1 cos2 θ � and
α � ≡ λ � . The remaining WWZ coupling parameters
λ � and ∆κ � are determined by the relations λ � = λ �

and ∆κ � = −∆κ � tan2 θ � + ∆g
�

1 . The HISZ rela-
tions [115] which have been used by the DØ and CDF
collaborations are also based on this set with the ad-
ditional constraint α � � = α ��� .

The di-boson production cross sections with non-SM
couplings grow with the parton center of mass energy√
ŝ. In order to avoid violation of S-matrix unitarity,

the anomalous couplings a = g
�

1 , ∆κ � , λ � are taken
as momentum dependent form factors with a scale Λ � �

a(ŝ) =
a

(1 + ŝ/Λ2
� � )

� (6)

and n = 2 (dipole form factor).
The Z

�

(q1) γ
�

(q2)V
�

(P ) (V = γ or Z) vertices
contributing to Zγ production are described by a gen-
eral vertex function [112] with eight dimensionless cou-
plings h

�

� (i = 1, . . . , 4 ;V = γ or Z):

Γ
�

� �
� � � =

P 2 − q2
1

M2�

{
h

�

1

(
q

�

2 g
�

�

− q �

2 g
� � )

+
h

�

2

M2�
P

� (
(P · q2) g

� �

− q
�

2P
� )

+ h
�

3 ε
� �

���
q2
�

+
h

�

4

M2�
P

�

ε
� ���

�

P � q2 �

}
.

(7)

In the SM, all h
�

� ’s are zero. The couplings h
�

1 and
h

�

2 violate CP ; all couplings are C-odd. The form
factors for these couplings are

h
�

� (ŝ) =
h

�

� 0
(1 + ŝ/Λ2

� � )
� , (8)

where one usually assumes that n = 3 for i = 1, 3 and
n = 4 for i = 2, 4 [107].

In the SM, the `+`−γ final state can be produced via
radiative decays of the Z boson or by production of a
boson pair via t- or u-channel quark exchange. The
former process is the dominant source of events with
small opening angle between the photon and charged
lepton and for events with a low value of photon
transverse energy, E

�
� . Events produced by the latter

process have lepton-pair invariant mass, m � � , close to
M � and three-body invariant mass, m � � � , larger than

M � . Anomalous ZZγ or Zγγ couplings would enhance
the cross section for Zγ production, particularly for
high-E � photons, relative to the SM expectations.

The most general form of the Z
�

(q1)Z
�

(q2)V
�

(P )
vertex function can be written in the form [112]

Γ
�

� �
� � � =

P 2 −M2�

M2�

(
if

�

4

(
P

�

g
� �

+ P
�

g
� � )

+ if
�

5 ε
� �

���
(q1 − q2) �

)
. (9)

CP invariance forbids f
�

4 and parity conservation re-
quires that f

�

5 vanishes. In the SM, f
�

4 = f
�

5 = 0.
S-matrix unitarity requires a form factor behavior for
ZZV couplings similar to that of h

�

1 and h
�

3 [116]
(Eq. (8) with n = 3).

Although the WWV , ZγV and ZZV couplings usu-
ally are assumed to be real, they are in general complex
quantities.

In theories which go beyond the SM, the WWV cou-
plings are expected to be at most O(M 2� /Λ2) where
Λ ∼ Λ � � is the scale of new physics. ZγV and ZZV
couplings are at most O(M4� /Λ4).

4.2. Recent Theoretical Developments
4.2.1. Parameterization of ZγV Couplings

In Ref. [117] it was pointed out that the couplings
h

�

� have to be purely imaginary quantities in order to
guarantee that an effective Lagrangian which would
lead to a vertex function of the form of Eq. (7) is
hermitian. In contrast, the WWV and ZZV couplings
are normalized such that real couplings automatically
correspond to a hermitian effective Lagrangian. Since
one usually assumes real couplings when placing limits
on anomalous vector boson self-couplings, it is useful
to replace the couplings h

�

� by

h′
�

� = −ih
�

� (10)

for the Run II analyses and beyond.
h′

�

� ’s and h
�

� ’s of equal magnitude result in virtually
the same differential cross sections at high energies.
This is illustrated in Fig. 54 for the case |h′

�

30| =
|h

�

30| = 0.3. In order to simulate detector response,
the following cuts have been imposed in Fig. 54:

p � (γ) > 10 GeV, |η(γ)| < 2.5, (11)

p � (`) > 20 GeV, |η(`)| < 2.5, (12)

m(``) > 75 GeV, m(``γ) > 100 GeV, (13)

and

∆R(`γ) > 0.7. (14)

The form factor scale has been chosen to be Λ � � =
750 GeV.
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Figure 54. The photon transverse momentum distri-
bution in pp̄ → `+`−γ at the Tevatron in the SM and
for anomalous ZZγ couplings. The cuts imposed are
described in the text.

Unlike for real h
�

3 � 4 couplings, the interference terms
between the SM and the non-SM contributions do not
vanish in the squared matrix element for real values
of h′

�

3 � 4. Thus, for intermediate values of p � (γ), the

differential cross sections for values of h′
�

3 � 4 of equal
magnitude but opposite sign slightly differ. Since most
of the sensitivity to anomalous couplings originates
from the high energy domain, the limits for h′

�

� are
expected to be almost identical to those obtained for
h

�

� . In the following we therefore list limits only for
h

�

� .

4.2.2. NLO QCD Corrections to Vector Boson
Pair Production

In the Run I di-boson analyses, data were compared
with leading order production calculations to extract
limits on the WWV and ZγV couplings. The effect
of higher order QCD corrections was simulated by
multiplying the differential cross sections by a simple
constant k-factor

k = 1 +
8π

9
α � . (15)

NLO calculations have shown [118] that the O(α � )
QCD corrections in the SM depend logarithmically on
ŝ and become large at high energies, due to gluon-
induced partonic subprocesses, which only enter at
NLO. An example is shown in Fig. 55, where we display
the transverse momentum distribution of the charged
lepton pair in pp̄→W+W−+X → e+e−p/ � +X . NLO
corrections are seen to be very large (O(10)) at high p � ,
and dramatically alter the shape of the distribution.

Figure 55. The e+e− transverse momentum distri-
bution in pp̄ → W+W− + X → e+e−p/ � + X at
the Tevatron in the SM. The following cuts were im-
posed to simulate detector response: p � (e) > 20 GeV,
|η(e)| < 2.5 and p/ � > 20 GeV. For the NLO 0-jet
curve (dotted line), jets with p � (j) > 20 GeV and
|η(j)| < 3.5 were vetoed.

Qualitatively this is precisely what one expects from
non-standardWWV couplings. Since the real emission
diagrams are responsible for the increase of the QCD
corrections with p � , a jet veto drastically reduces the
size of the QCD corrections (dotted line). It should
be noted that the NLO QCD corrections reduce the
W+W− cross section when a jet veto is imposed.

With the more than 20-fold increase in statistics ex-
pected in Run II, it is clear that the QCD corrections
to di-boson production must properly be taken into
account when information on anomalous couplings is
extracted. Over the past seven years the NLO QCD
corrections to Wγ [119], Zγ [120], WW [121] and WZ
production [122] including non-standard WWV and
ZγV couplings have been calculated using the narrow
width approximation and ignoring spin correlations in
the finite virtual corrections. Recently, more complete
calculations have become available which properly take
into account the previously ignored spin correlations.
Ref. [123] also includes single resonant diagrams and
finite W and Z width effects in the calculation; how-
ever, no anomalous couplings are taken into account.
Refs. [124,125] use the narrow width approximation,
but do include the option of non-standard WWV cou-
plings.

The contribution of the finite virtual corrections to
the NLO cross section is smaller than about 10% for
all di-boson processes. The spin correlations ignored
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Table 6
The pp̄ → W+W− + X → e+e−p/ � + X cross section
for
√
s = 2 TeV with p � (e) > 20 GeV, |η(e)| < 2.5,

and p/ � > 20 GeV. Jets are required to have p � (j) >
20 GeV, |η(j)| < 2.5. Results are shown for the cal-
culations of Ref. [121] (BHO) and Ref. [124] (DKS)
with factorization scale Q2 = M2� , and using the
CTEQ4M [126] set of parton distribution functions.

BHO DKS
σ (fb) σ (fb)

Standard Model
Born 61.2 61.2
NLO 80.9 81.3

NLO 0-jet 65.6 65.3

∆g
�

1 = 0.5, λ � = λ � = 0.1, ∆κ � = ∆κ � = 0.3
Λ � � = 2 TeV

Born 82.7 82.8
NLO 106.5 107.0

NLO 0-jet 84.2 83.7

in Refs. [119–122] therefore are expected to have a
rather small effect on the total cross section, as well as
on most distributions. This expectation is confirmed
by an explicit comparison between the calculations of
Refs. [124] (DKS) and [121] (BHO) forW+W− produc-
tion which is shown in Table 6. The two calculations
are seen to agree at the 1% level.

A more detailed and careful comparison between the
BHO and DKS calculations forW+W− and W±Z pro-
duction at the LHC has been carried out in Ref. [127].
The WZ cross sections of the two calculations were
found to agree within 1.5%, whereas in the WW case
deviations of up to 3.8% were observed at NLO. Sub-
sequently, a small error in the BHO W+W− code was
discovered [128]. After correction of this error, the
BHO and DKS calculations of W+W− production at
the LHC agree to better than 0.5% [128].

4.3. Summary of Run Ia and Run Ib Analyses
at CDF and DØ

This subsection contains a summary of the published
CDF and DØ analyses. The intent is to provide an
overview of the progress, a list of published papers,
and tables which provide the basis for the comparison
made in the next subsection.

4.3.1. WWγ and WWZ Couplings
The DØ and CDF collaborations have performed

several searches for anomalous WWγ and WWZ cou-
plings. Studies [129–131] of pp̄ → Wγ + X have
shown that the transverse energy spectrum of the pho-
tons agreed with that expected from SM production.
Searches [132–134] for an excess of pp̄ → WW + X ,

where the W bosons each decayed to `ν (` = e
or µ), yielded events which matched the SM predic-
tion. Further, the p � spectrum of the charged leptons
agreed [134] with the prediction. Studies [135–138] of
the processes pp̄ → WW + X and pp̄ → WZ + X ,
where one W boson decayed to a lepton or anti-lepton
and the corresponding anti-neutrino or neutrino and
the other vector boson decayed to a quark-antiquark
pair manifested as jets, yielded no excess of events and
a W boson transverse energy spectrum which matched
the expected background plus SM signal. Lastly, DØ
studied [138] the process pp̄ → WZ +X where the Z
boson decayed to ee and the W boson decayed to either
eν or µν. Limits on anomalous WWγ and WWZ cou-
plings were derived from each of these analyses. Sev-
eral [130,132,136] of these analyses were presented in
detail in Ref. [139]. The results of all of the DØ analy-
ses were combined [138], using the maximum-likelihood
method [139,140], to form the Tevatron’s most restric-
tive limits on anomalous WWγ and WWZ couplings.

Table 7 shows the anomalous coupling limits
achieved in each of the analyses described above, the
luminosity used, and the reference to the paper in
which the result was published. It should be noted
that many of the papers published limits under sev-
eral assumptions for the relations between the coupling
parameters and with several values of the form factor
Λ � � . Only those limits from the case λ = λ � = λ � and
∆κ = ∆κ � = ∆κ � are listed, except for Wγ and WZ
where only WWγ and WWZ couplings, respectively,
are relevant.

4.3.2. ZγV Couplings
The DØ and CDF collaborations have also per-

formed several searches for anomalous Zγγ and ZZγ
couplings. Studies [141–143] of the process pp̄ →
Zγ+X → `+`−γ+X have shown that the event yield
and transverse energy spectrum of the photons agreed
with that expected from SM Zγ production, though
it is noted that there were two Zγ → eeγ events with
photons of E � greater than 70 GeV, expected in only
7.3% of trial experiments.

Studies of the process Zγ → νν̄γ have the ad-
vantage of the higher branching fraction for decay to
neutrinos than does the charged-lepton decay mode.
Furthermore, there is no final state radiation because
the neutrinos are electrically neutral. However, the
signal-to-background ratio is rather lower than in the
charged-lepton analysis. DØ has published [144] the
results of the Run Ia Zγ → νν̄γ analysis. Again, the
spectrum of the transverse energy of the photons, for
E

�
� ≥ 40 GeV, agreed with the SM prediction.
DØ and CDF produced limits on anomalous ZγV

(V = Z, γ) couplings using a fit to the E
�

� spectrum.
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Table 7
95% confidence level WWγ and WWZ anomalous coupling limits achieved in Run I analyses by the DØ and CDF
Collaborations.
Analysis Ref. Run Lum. (pb−1) Λ � � A.C. Limit (95% CL)

CDF Wγ → [129] Ia 20 1.5 TeV −0.7 ≤ λ ≤ 0.7
eνγ and µνγ −2.2 ≤ ∆κ ≤ 2.3
DØ Wγ → [130] Ia 13.8 1.5 TeV −0.6 ≤ λ ≤ 0.6
eνγ and µνγ −1.6 ≤ ∆κ ≤ 1.8
DØ Wγ → [131] Ia + Ib 92.8 1.5 TeV −0.31 ≤ λ ≤ 0.29
eνγ and µνγ −0.93 ≤ ∆κ ≤ 0.94
DØ WW → [132] Ia 14 900 GeV −2.1 ≤ λ ≤ 2.1
Dilepton Equal Couplings −2.6 ≤ ∆κ ≤ 2.8
CDF WW → [133] Ia + Ib 108 1.0 TeV −0.9 ≤ λ ≤ 0.9
Dilepton Equal Couplings −1.0 ≤ ∆κ ≤ 1.3
DØ WW → [134] Ia + Ib 97 1.5 TeV −0.53 ≤ λ ≤ 0.56
Dilepton Equal Coupling −0.62 ≤ ∆κ ≤ 0.77
CDF WW and WZ →[135] Ia 19.6 1.0 TeV −0.81 ≤ λ ≤ 0.84
leptons + jets Equal Couplings −1.11 ≤ ∆κ ≤ 1.27
DØ WW and WZ → [136] Ia 13.7 1.5 TeV −0.6 ≤ λ ≤ 0.7
eνjj Equal Couplings −0.9 ≤ ∆κ ≤ 1.1
DØ WW and WZ → [137] Ia + Ib 96 1.5 TeV −0.36 ≤ λ ≤ 0.39
eνjj Equal Couplings −0.47 ≤ ∆κ ≤ 0.63
DØ WW and WZ → [137] Ia + Ib 96 2.0 TeV −0.33 ≤ λ ≤ 0.36
eνjj Equal Couplings −0.43 ≤ ∆κ ≤ 0.59
DØ WW and WZ → [138] Ib 81 2.0 TeV −0.43 ≤ λ ≤ 0.44
µνjj Equal Couplings −0.60 ≤ ∆κ ≤ 0.74
DØ WZ → [138] Ib 92 1.0 TeV −1.42 ≤ λ � ≤ 1.42
eeµν and eeeν −1.63 ≤ ∆g

�

1 ≤ 1.63
DØ Combined [138] Ia + Ib 96 2.0 TeV −0.18 ≤ λ ≤ 0.19

Equal Couplings −0.25 ≤ ∆κ ≤ 0.39

The DØ Run Ia and Run Ib results were combined
in Ref. [143]. Table 8 shows a compilation of all the
Run I CDF and DØ results. The limits for h

�

30 (h
�

40)
and h

�

10 (h
�

20) are almost identical to those obtained
for h

�

30 (h
�

40) and are, therefore, not shown.

4.4. Hindsight: Extrapolating Run Ia Results
to Run Ib

It is interesting to see how well one can “predict”
the Run Ib limits based on the Run Ia results and a
simple rule for scaling the limits based on the increase
in the luminosity.

The WWγ and WWZ anomalous coupling limits
should scale by

(∫
Ldt
)1

�
4

. (16)

One square-root comes from the decrease in the statis-
tical uncertainty of the cross section (as a function of
E � , for instance) and the other from the fact that the
differential cross section is a quadratic function of the
anomalous couplings.

The Zγγ and ZZγ anomalous coupling limits would
also scale by the fourth-root of the ratio of the lumi-
nosities, except that the limits depend very strongly
on the form-factor scale.

4.4.1. Wγ
The integrated luminosity used in DØ’s Run Ia +

Run Ib Wγ analysis was 6.72 times larger than the
Run Ia sample alone. From that we expect the com-
bined anomalous coupling limits to be (1/6.72)1

�
4 =

0.62 as large as the Run Ia limits. Scaling the Run Ia
results in Table 7, we would expect limits −1.0 ≤
∆κ � ≤ 1.1 and −0.38 ≤ λ � ≤ 0.38. Instead, from
Table 7, the result was equivalent to a scaling of∼ 0.52.
That does not seem very different, but it is, for it
corresponds to the equivalent of a factor of two more
luminosity. The difference is attributed to an improve-
ment in technique, the use of a three-body transverse
mass criteria to remove events where the photon was
radiated from a charged final state lepton. It’s hard
to predict improvement techniques because, if such
improvements were a priori known, they would most
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Table 8
95% confidence level ZZγ and Zγγ anomalous coupling limits achieved in the Run I analyses by the DØ and CDF
Collaborations.
Analysis Ref. Run Lum. (pb−1) Λ � � A.C. Limit (95% CL)

CDF Zγ → [141] Ia 20 500 GeV −3.0 ≤ h
�

30 ≤ 3.0

eeγ and µµγ −0.7 ≤ h
�

40 ≤ 0.7

DØ Zγ → [142] Ia 14 500 GeV −1.8 ≤ h
�

30 ≤ 1.8

eeγ and µµγ −0.5 ≤ h
�

40 ≤ 0.5

DØ Zγ → [143] Ia 13 750 GeV −0.4 ≤ h
�

30 ≤ 0.4

νν̄γ −0.06 ≤ h
�

40 ≤ 0.06

DØ Zγ → [144] Ib 97 500 GeV −1.31 ≤ h
�

30 ≤ 1.31

eeγ and µµγ −0.26 ≤ h
�

40 ≤ 0.26

DØ Zγ → [144] Ib 97 750 GeV −0.69 ≤ h
�

30 ≤ 0.69

eeγ and µµγ −0.08 ≤ h
�

40 ≤ 0.08

DØ Combined [144] Ia + Ib 750 GeV −0.36 ≤ h
�

30 ≤ 0.36

−0.05 ≤ h
�

40 ≤ 0.05

likely have been applied.

4.4.2. WW/WZ → eνjj
We expect the Run Ia + Run Ib limits to scale by

0.61 from the ratio of the integrated luminosities. Con-
sulting Table 7, we find that this is essentially right on
the nose for the Λ � � = 1.5 TeV limits. The Run Ia
+ Ib Λ � � = 2 TeV limits, not available because of
unitarity constraints in the Run Ia sample, represent
a slight (∼ 10%) improvement over the Run Ia + Ib
Λ � � = 1.5 TeV results.

4.4.3. WW → dileptons
We expect the Run Ia + Run Ib limits to scale

by 0.62 from the ratio of the integrated luminosities.
However, that is not what happened. An important
improvement in the technique, namely a 2-D fit to the
lepton E � spectrum, plus the subsequent increase in
the allowed form factor, allowed the combined results
to be almost a factor of four better. Here is a case
where we have already challenged the Run II limits
predicted by the TeV 2000 report.

4.4.4. Zγ → eeγ and µµγ
Again, by the fourth-root rule, we expect the Run Ib

limits to scale by 0.62. For Λ � � = 500 GeV, we found
that the h

�

30 results scaled by 0.72 and the h
�

40 by 0.52,
averaging out to a scale factor of 0.62. But, because
of the strong dependence on the form factor scale, the
results at Λ � � = 750 GeV are 3.5 and 5 times better
for h

�

30 and h
�

40, respectively.

4.5. Expectations for Run II Anomalous Cou-
pling Limits

Having probed the usefulness and limitations of our
scaling formula, we apply it to the Run I analyses
to determine the limits that might be attained with
2 fb−1. Of course, any projections for anomalous cou-
pling limits are merely sensitivity estimates. Improve-
ments in technique, such as multi-dimensional fits, or
using clever projection techniques (see Ref. [145] for an
example) may yield more stringent limits.

For the Wγ and WW/WZ analyses we will use an
integrated luminosity scale factor (2000/100)1

�
4 = 2.1.

The slight improvement from the ≈ 10% increase in
cross section available should the Tevatron operate at
center of mass energy 2000 GeV is ignored. Increasing
the form factor scale from 1.5 TeV to 2 TeV strength-
ens the limits by about 10%. The WZ → trileptons
analysis will improve by about a factor of 6 because
of the increased integrated luminosity and because of
the improvement in limit-setting technique available
by fitting the E � spectrum of the Z bosons. Table 9
contains the expected results. In order to put these
bounds into perspective, we list the most recent LEP2
(95% CL) limits from a 3-parameter fit [146], assuming
∆κ � = ∆g

�

1 −∆κ � tan2 θ � and λ � = λ � :

−0.073 < ∆g
�

1 < 0.075, (17)

−0.12 < ∆κ � < 0.16, (18)

−0.15 < λ � < 0.01. (19)

It should be noted that form factor effects are not
included in the bounds obtained at LEP2. Taking
into account the form factor behavior of anomalous
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Table 9
95% confidence level WWγ and WWZ anomalous coupling limits that might be achieved by DØ or CDF in Run II.

Analysis Lum. (pb−1) Λ � � A.C. Limit (95% CL)

Wγ → 2000 1.5 TeV −0.14 ≤ λ ≤ 0.14
eνγ and µνγ Equal Couplings −0.44 ≤ ∆κ ≤ 0.44
Wγ → 2000 2.0 TeV −0.12 ≤ λ ≤ 0.12
eνγ and µνγ Equal Couplings −0.40 ≤ ∆κ ≤ 0.40
WW and WZ → 2000 2.0 TeV −0.16 ≤ λ ≤ 0.17
eνjj Equal Couplings −0.20 ≤ ∆κ ≤ 0.28
WZ → trileptons 2000 2.0 TeV −0.2 ≤ λ � ≤ 0.2

−0.3 ≤ ∆g
�

1 ≤ 0.3
Combined 2000 2.0 TeV −0.086 ≤ λ ≤ 0.090
(per experiment) Equal Couplings −0.12 ≤ ∆κ ≤ 0.19

couplings weakens the limits obtained. For a dipole
form factor with Λ � � = 2 TeV, this is a 2% effect.

For anomalous Zγγ and ZZγ couplings we fore-
cast limits which are very similar to those given in
the Tev 2000 Report. Those predictions are based on
1 fb−1 integrated luminosity and Λ � � = 1500 GeV and
are listed in Table 10. The bounds obtained for h

�

10

(h
�

20) almost coincide with those found for h
�

30 (h
�

40).
For comparison, the most recent 95% CL limits on h

�

�
from LEP2 are:

−0.17 <h
�

1 < 0.08 −0.26 <h
�

1 < 0.09, (20)

−0.11 <h
�

2 < 0.10 −0.11 <h
�

2 < 0.16, (21)

−0.027 <h
�

3< 0.041 −0.29 <h
�

3 < 0.21, (22)

−0.026 <h
�

4< 0.022 −0.12 <h
�

4 < 0.20. (23)

Only one coupling at a time is varied here. Correcting
for form factor effects, the limits for h1 � 3 (h2 � 4) weaken
by about 5% (7%) for Λ � � = 1500 GeV.

In Run II, the Tevatron will thus be able to im-
prove the existing bounds on anomalous ZγV cou-
plings mostly for h

�

2 � 4. If an integrated luminosity of
10 fb−1 can be achieved in Run II, the limits listed
in Tables 9 and 10 would improve by approximately a
factor 1.5.

A few additional comments are in order at this point:

4.5.1. WW/WZ → eνjj
Note that the expected Run II anomalous coupling

limit has nearly been ruled out by the Run I combined
analysis measurement. Nevertheless, if the Run II com-
bined measurement is to scale based on the increase in
the luminosity, all of the analyses must be carried out
again.

4.5.2. Zγ → eeγ and µµγ
Scaling the Run I yield, totalling 29 eeγ+µµγ candi-

dates at DØ, by the increase in luminosity, one expects

about 600 eeγ+µµγ events per experiment. The QCD
background and final state radiation background will
be reduced compared to Run I through the application
of a di-lepton invariant mass criteria, reducing the sam-
ples to ∼ 250 events. The Run II data will settle once
and for all, whether there is a bump in the Zγ invariant
mass spectrum, as is not very strongly suggested by the
Run I data. That is, unless a new one crops up.

4.5.3. Zγ → νν̄γ
This is a powerful tool for studying Zγγ and ZZγ

couplings because of the large (20%) branching frac-
tion for Z → νν̄. However, because the Z boson is
undetectable, there aren’t any other kinematic han-
dles. There are common backgrounds which produce
the same signature as the signal: a photon recoiling
against missing transverse energy (neutrinos). In or-
der to reduce the backgrounds, a higher E

�
� cut is

used than in the other Zγ analyses (40 GeV instead
of 7 – 10 GeV). Understanding the normalization of
the background from cosmic ray muons that happened
to deposit energy in the calorimeter in such a way as to
mimic a photon was the main difficulty in this analysis
in Run I. This background should be more tractable in
Run II using the new central and forward preshower
detectors and a technique similar to that described in
DØ’s Run Ia publications [139,144].

4.6. New Directions in Di-boson Production for
Run II

Besides improving limits from final states analyzed
in Run I, a number of new channels will become acces-
sible in Run II, either due to the increased data sample,
or because of detector improvements. In addition, it
will be possible to search for the so-called “radiation
zero” in Wγ production. In this subsection, we first
briefly describe the search for the radiation zero and
the prospects for using di-boson final states involving
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Table 10
95% confidence level ZγV anomalous coupling limits that might be achieved by DØ or CDF experiments in Run II.

Analysis Lum. (pb−1) Λ � � A.C. Limit (95% CL)

Zγ → 1000 1.5 TeV −0.105 ≤ h
�

30 ≤ 0.105

eeγ −0.0064 ≤ h
�

40 ≤ 0.0064

Zγ → 1000 1.5 TeV −0.038 ≤ h
�

30 ≤ 0.038

ννγ −0.0027 ≤ h
�

40 ≤ 0.0027

b-quarks. This is followed by a somewhat more detailed
analysis of ZZ production, the main new di-boson
channel which will become accessible in Run II.

4.6.1. Radiation Zero in Wγ Production
Wγ production is of special interest because of

the “radiation zero” in the helicity amplitudes [147].
The Tev 2000 Report describes the situation very elo-
quently and completely. The SM helicity amplitudes
of the process q1q̄2 →W±γ vanish for

cos θ∗ =
Q1 +Q2

Q1 −Q2
= ±1

3
(24)

where θ∗ is the scattering angle of the W boson with
respect to the quark (q1) direction in theWγ rest frame
and Q1 and Q2 are the quark and anti-quark elec-
tric charges normalized by the proton electric charge.
Anomalous couplings destroy the radiation zero as
do higher-order QCD corrections, backgrounds, finite
W -width effects, and events where the photon is radi-
ated from the charged lepton instead of the W .

The trick in reconstructing θ∗ is in determining the
parton center-of-mass frame because there are two so-
lutions for the z-component of the neutrino momen-
tum. CDF discussed [148] a possible solution in se-
lecting the minimum of the p � (ν) solutions for W−γ
and the maximum of the p � (ν) solutions for W+γ.
This is correct 73% of the time because of the high
W polarization at Tevatron production energies. CDF
saw a hint [148] of the radiation zero in Run Ib but the
signal was not definitive.

The twofold ambiguity in reconstructing cos θ∗ can
be avoided by studying rapidity correlations such as
∆y(γ, `) = y(γ) − y(`), which manifests the radiation
zero at ∆y(γ, `) ≈ −0.3 [149].

The Tevatron is operating at the ideal energy for
observing the radiation zero because the zero is not
smeared out by NLO processes expected from Wγ pro-
duction at higher energy accelerators. Fig. 56 shows
the ∆y(γ, `) distribution, together with the statistical
errors for 1 fb−1. The radiation zero will be observed
in Run II if it is there.
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Figure 56. Simulation of the SM ∆y(γ, e) distribution
in pp̄ → W+γ → e+p/ � γ in the DØ detector (from
Ref. [77]). In addition to the standard p/ � , electron and
photon p � and rapidity cuts, a ∆R(γ, `) > 0.7 cut, and
a cluster transverse mass cut of m � (`γ; p/ � ) > 90 GeV
are imposed (to reduce the W → eνγ background).
The statistical error bars for an integrated luminosity
of 1 fb−1 are also shown.

4.6.2. WZ → `νbb̄
This channel has not been studied in Run I. It will

be examined very closely in Run II because it is a
background in the search for associated Higgs boson
production (W + H0 where W → `ν and H0 → bb̄).
The SM cross section for WZ production, including
NLO QCD corrections, is about 3.7 pb. The branch-
ing fraction for Z → bb̄ is ∼ 15%. This is 2.5 times
as much as that of Z → µµ̄ and Z → eē combined.
So we can expect about 250 eνbb̄ + µνbb̄ events per
experiment, not counting acceptance, lepton ID, and
b-tagging efficiencies, which can be expected to amount
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to ∼ 0.20 for such a final state. A cut on bb̄ invariant
mass will reduce the W+jets background.

This is ripe for an anomalous coupling analysis. To
produce WWZ anomalous coupling limits, one can fit
the E � spectrum of the W boson and of the final-state
lepton, such as was done in the Run I WW/WZ →
`ν+jets analyses.

4.6.3. Zγ → bb̄γ
Scaling the Run I yield, totalling 29 eeγ + µµγ can-

didates at DØ, by the increase in luminosity and a
factor for the larger branching ratio of Z → bb̄ to
Z → ee(µµ), one might expect about 1000 Zγ → bb̄γ
events. Background from γjj and three jet events where
a jet mimics a photon are larger than the signal and
may constrain this to a limit-setting analysis (see also
Sec. 3.3.5).

4.6.4. ZZ Production
For Run I, ZZ production has not been analyzed.

The total cross section for pp̄→ ZZ at
√
s = 2 TeV, in-

cluding NLO QCD corrections is approximately 1.5 pb.
For an integrated luminosity of 2 fb−1 one thus expects
a few ZZ → `+1 `

−
1 `

+
2 `
−
2 (`1, `2 = e, µ) events, if real-

istic lepton p � and pseudo-rapidity cuts are imposed.
Larger event rates are expected for ZZ → `+`−ν̄ν,
ZZ → `+`−jj and ZZ → ν̄νjj. These channels, how-
ever, suffer from non-trivial background contributions.
In this subsection we briefly discuss the signals of
anomalous ZZV couplings in the four channels, and
derive sensitivity bounds on f

�

4 and f
�

5 which one
expects to achieve with 2 fb−1 (Run IIa) and 10 fb−1

(Run IIb). More details will be given elsewhere [116].
The results reported here are based on a tree level

calculation of ZZ production in the double pole ap-
proximation. Timelike photon exchange and the de-
cays of the Z bosons, including full decay correlations
and finite Z width effects, are taken into account in the
calculation. To simulate detector response, we impose
the following transverse momentum, pseudo-rapidity
and separation cuts:

p � (`) > 15 GeV, |η(`)| < 2.5, (25)

p � (j) > 20 GeV, |η(j)| < 2.5, (26)

∆R(`j) > 0.6, ∆R(jj) > 0.6. (27)

In the ZZ → ν̄νjj case, Eq. (25) is replaced by a
charged lepton veto

p � (`) < 10 GeV for |η(`)| < 2.5. (28)

In addition to the cuts imposed on the leptons and jets,
we require

p/ � > 20 GeV for ZZ → `+`−p/ � , (29)

p/ � < 20 GeV for ZZ → `+`−jj, (30)

p/ � > 60 GeV for ZZ → p/ � jj (31)

and

76 GeV < m(``) < 106 GeV, (32)

76 GeV < m(jj) < 106 GeV. (33)

Finally, in the ZZ → `+`−ν̄ν case, we require that
the angle in the transverse plane between a charged
lepton and the missing transverse momentum is be-
tween 20◦ and 160◦ if the missing p � is p/ � < 50 GeV.
This suppresses backgrounds from bb̄ production and
Z → τ+τ− decays to a negligible level.

Uncertainties in the energy measurements are taken
into account in the numerical simulations by Gaus-
sian smearing of the particle momenta according to
the resolutions of the CDF II detector. For the form
factor we use the form of Eq. (8) with n = 3 and
Λ � � = 750 GeV. We use the CTEQ4L parton distribu-
tion functions with Q2 = M2� . Unless stated otherwise,
only one ZZV coupling at a time is chosen different
from its zero SM value. For simplicity, we only consider
real ZZV couplings.

ZZ → 4 leptons

Similar to the WWV and ZγV couplings, the ef-
fects of anomalous ZZV couplings are enhanced at
large energies. A typical signal of nonstandard ZZZ
and ZZγ couplings thus will be a broad increase in
the ZZ invariant mass distribution, the Z transverse
momentum distribution and the p � distribution of the
Z decay leptons. This is illustrated in Fig. 57 for the
p � (Z) and the p � (µ) distributions in pp̄ → ZZ →
e+e−µ+µ−. Results are shown for the SM, f

�

40 = 0.3
and f

�

50 = −0.3. Terms proportional to f
�

4 and f
�

5

in the matrix elements have identical high energy be-
havior. Differences in the differential cross sections at
high energies between ZZZ and ZZγ couplings are
thus controlled by the Zff̄ and γff̄ couplings, and
by the parton distribution functions. At the Tevatron
these result in differential cross sections which differ by
only a few percent for ŝ�M 2� if |f

�

� | = |f
�
� | (i = 4, 5).

Slightly larger differences are observed at intermediate
energies and transverse momenta. Since f

�

4 violate CP
conservation, terms in the helicity amplitudes propor-
tional to those couplings do not interfere with the SM
terms as long as f

�

4 is real. Cross sections thus are
independent of the sign of f

�

4 .
To distinguish f

�

4 and f
�

5 , and to determine the sign
of f

�

5 , the ∆R(`+� `
−
� ) and ∆Φ(`+� `

−
� ) (i = 1, 2) distri-

butions may be helpful, if deviations from the SM pre-
dictions should be found in the p � or the m � � differ-
ential cross sections. Fig. 58 shows the ∆R(µ+µ−) and
∆Φ(µ+µ−) distributions for pp̄ → ZZ → e+e−µ+µ−

in the SM and for non-standard ZZZ couplings. The
shape of the distributions for non-zero f

�

4 , f
�

5 > 0 and
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Figure 57. The p � (Z) and p � (µ) distributions in pp̄ → ZZ → e+e−µ+µ− in the SM and in the presence of
non-standard ZZV couplings.

Figure 58. The ∆R(µ+µ−) and ∆Φ(µ+µ−) distributions in pp̄→ ZZ → e+e−µ+µ− in the SM and in the presence
of non-standard ZZZ couplings.
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f
�

5 < 0 are quite different. Similar results are obtained
for the corresponding distributions of the e+e− pair,
and for the ZZγ couplings f

�

4 � 5.
Anomalous couplings mostly affect the cross section

at large Z-boson transverse momentum. Due to the
Lorentz boost, the relative opening angle between the
leptons originating from the Z decay decreases with
increasing p � . The deviations due to non-standard
ZZV couplings in the ∆R(`+� `

−
� ) and ∆Φ(`+� `

−
� ) distri-

butions thus are therefore concentrated at rather small
values. The SM ∆R(`+� `

−
� ) and ∆Φ(`+� `

−
� ) differential

cross sections are dominated by the threshold region,√
ŝ ≈ 2m � , where the Z boson momenta are small

and the decay leptons tend to be back-to-back, i.e.
the distributions are strongly peaked at ∆R ≈ 3 and
∆Φ = 180◦.

Using the ∆R(`+� `
−
� ) and ∆Φ(`+� `

−
� ) distributions,

it may be possible to distinguish f
�

4 and f
�

5 and to
determine the sign of f

�

5 , provided a sufficient number
of events are observed.

ZZ → `+`−ν̄ν

In contrast to the ZZ → 4 leptons mode which is
almost background free, there are several potentially
important background processes if one of the two Z
bosons decays into neutrinos. The advantage of the
ZZ → `+`−ν̄ν channel is its larger branching fraction.
Summing over the three neutrino species, the number
of ZZ → `+`−ν̄ν signal events is about a factor 6 larger
than the number of ZZ → 4 leptons events.

The most important background processes con-
tributing to the ZZ → `+`−ν̄ν channel are tt̄ →
W+W−bb̄, standard electroweak W+W−+X produc-
tion with W+W− → `+ν`−ν̄, and Z(→ `+`−) + 1 jet
production with the jet rapidity outside the range cov-
ered by the detector and thus faking missing p � . Our
results for signal and backgrounds are summarized in
Fig. 59 for the ZZ → e+e−ν̄ν case.

The two most important backgrounds are tt̄ and
W+W− + X production. If no additional cuts are
imposed to suppress the tt̄ background, its differential
cross section is larger than the SM signal for e+e−

transverse momenta as large as 200 GeV, and may
thus reduce the sensitivity to anomalous ZZV cou-
plings (see Fig. 59a). Requiring that no jets with
p � (j) > 20 GeV and |η(j)| < 3.5 are present al-
most completely eliminates the tt̄ background. It also
reduces the W+W− + X background at large trans-
verse momenta. As shown in Fig. 55, NLO QCD
corrections strongly affect the p � (e+e−) distribution in
W+W− → e+νe−ν̄. The enhancement at large p � is
mostly due to real emission diagrams, leading to events
which contain a hard jet.

To calculate the Z + 1 jet background, we have
assumed that jets with a rapidity |η(j)| > 3.5 are
misidentified as p/ � . With this rather conservative as-
sumption, the Z+1 jet background is much larger than
the ZZ signal at small transverse momenta. Due to
kinematical constraints, however, it drops rapidly with
p � . Since non-standard ZZV couplings lead to large
deviations from the SM only at high transverse mo-
mentum, essentially no sensitivity is lost by requiring
p � (`+`−) > 40 GeV when testing for ZZV couplings.

ZZ → `+`−jj and ZZ → ν̄νjj

The ZZ → `+`−jj and ZZ → ν̄νjj channels have
larger branching ratios than the ZZ → 4 leptons and
the ZZ → `+`−ν̄ν channels, but also much higher
backgrounds. The main background sources are QCD
Z + 2 jet production and W±Z production with the
W decaying into two jets. The p � (`+`−) distribution
for ZZ → `+`−jj is shown in Fig. 60a. Fig. 60b shows
the p � (jj) distribution for ZZ → ν̄νjj. In each case
we display the SM cross section together with the two
main backgrounds, Zjj and W±Z production. We also
show the ZZ cross section for f

�

40 = 0.3.
The p/ � > 60 GeV cut imposed in the ZZ → p/ � jj

case helps to suppress the bb̄ and Z → τ+τ− back-
grounds. The “kink” in the WZ and ZZ differen-
tial cross sections at p � ≈ 250 GeV is due to the
∆R(jj) > 0.6 cut which becomes effective only at
sufficiently high transverse momenta. The W±Z dif-
ferential cross section is very similar to that of the
SM signal over most of the p � range considered. The
p/ � < 20 GeV cut imposed in the ZZ → `+`−jj channel
effectively eliminates the tt̄ → `+ν`−ν̄jj background.
The charged lepton veto (see Eq. (28)) required in the
ZZ → p/ � jj case rejects backgrounds from tt̄ produc-
tion, W → `ν, and Z → `+`− decays. The Zjj back-
ground is uniformly about a factor 10 larger than the
SM ZZ signal. It will therefore be very difficult to ob-
serve ZZ production in the semi-hadronic channels, if
the SM prediction is correct. However, for sufficiently
large anomalous ZZV couplings, the ZZ cross section
exceeds the background at large transverse momenta.
ZZ → `+`−jj and ZZ → ν̄νjj therefore may still be
useful in obtaining limits on the ZZV couplings, sim-
ilar to the semi-hadronic WW and WZ channels used
by CDF and DØ in Run I to extract limits on the
WWV couplings.

Sensitivity Bounds

In order to derive sensitivity limits for anomalous
ZZV couplings which one can hope to achieve in
Run II, we use the p � (`+`−) distribution for ZZ →
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Figure 59. Transverse momentum distribution of the e+e− pair in pp̄ → ZZ → e+e−ν̄ν at the Tevatron, together
with the differential cross sections from several background processes a) without and b) with a jet veto applied.

Figure 60. Transverse momentum distribution of a) the `+`− pair in pp̄→ ZZ → `+`−jj, and b) of the jet pair in
ZZ → ν̄νjj at the Tevatron, together with the differential cross sections from tt̄, W±Z and Z + 2 jet production.
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Table 11
Sensitivities achievable at 95% CL for the anomalous ZZV couplings in pp̄→ ZZ → 4 leptons, pp̄→ ZZ → `+`−ν̄ν,
pp̄→ ZZ → `+`−jj, and pp̄→ ZZ → ν̄νjj at the Tevatron a) for an integrated luminosity of 2 fb−1, and b) for an
integrated luminosity of 10 fb−1.

a)
∫
Ldt = 2 fb−1

coupling ZZ → 4 leptons ZZ → `+`−ν̄ν ZZ → `+`−jj ZZ → ν̄νjj

f
�

40 –
+0.169
−0.169

+0.219
−0.218

+0.156
−0.155

f
�

40 –
+0.175
−0.174

+0.222
−0.221

+0.157
−0.157

f
�

50 –
+0.171
−0.204

+0.220
−0.244

+0.157
−0.179

f
�

50 –
+0.184
−0.202

+0.229
−0.241

+0.166
−0.174

b)
∫
Ldt = 10 fb−1

coupling ZZ → 4 leptons ZZ → `+`−ν̄ν ZZ → `+`−jj ZZ → ν̄νjj

f
�

40
+0.180
−0.179

+0.097
−0.097

+0.146
−0.145

+0.104
−0.103

f
�

40

+0.185
−0.185

+0.100
−0.099

+0.148
−0.147

+0.104
−0.104

f
�

50
+0.178
−0.216

+0.092
−0.120

+0.144
−0.167

+0.102
−0.124

f
�

50
+0.192
−0.213

+0.103
−0.115

+0.151
−0.163

+0.109
−0.118

4 leptons, ZZ → `+`−ν̄ν and ZZ → `+`−jj. For
the ZZ → ν̄νjj channel we use the p � (jj) distribu-
tion. Other distributions, such as the ZZ invariant
mass distribution (useful only for ZZ → 4 leptons),
or the maximum or minimum transverse momenta of
the charged leptons or jets, yield similar results. In
deriving our sensitivity limits, we combine channels
with electrons and muons in the final state.

We calculate 95% confidence level (CL) limits per-
forming a χ2 test. The statistical significance is calcu-
lated by splitting the p � distribution into a number of
bins, each with more than five events typically. In each
bin the Poisson statistics is approximated by a Gaus-
sian distribution. In order to derive realistic limits,
we allow for a normalization uncertainty of 30% of the
SM cross section. Backgrounds in the ZZ → `+`−ν̄ν,
ZZ → `+`−jj and ZZ → ν̄νjj channels are included
in our calculation. In the ZZ → `+`−ν̄ν case we
assume that a jet veto has been imposed to reduce
the tt̄ background and require p � (`+`−) > 40 GeV to
eliminate the Z + 1 jet background. As before, we use
a form factor of the form of Eq. (8) with n = 3 and
Λ � � = 750 GeV. Non-negligible interference effects

are found between f
�

4 and f
�

4 , and between f
�

5 and
f

�

5 . As a result, different anomalous contributions to
the helicity amplitudes may cancel partially, resulting
in weaker bounds than if only one coupling at a time
is allowed to deviate from its SM value.

In Table 11 we display sensitivity limits for the
Tevatron and integrated luminosities of 2 fb−1 and
10 fb−1, taking into account the correlations between
f

�

4 and f
�

4 , and between f
�

5 and f
�

5 . No limits for the
ZZ → 4 leptons case with 2 fb−1 are given. The lim-
ited number of events in this case does not allow for an
analysis of the p � (`+`−) distribution using the method
chosen here. The bounds obtained from ZZ → `+`−ν̄ν
and ZZ → ν̄νjj are quite similar. The cross section
for ZZ → ν̄νjj is about a factor 10 larger than that
for ZZ → `+`−ν̄ν, however, the large background
from Zjj production considerably limits the sensitiv-
ity to ZZV couplings for ZZ → ν̄νjj. The limits
from the ZZ → `+`−jj and ZZ → 4 leptons channels
are about a factor 1.5 and 2 weaker than those from
ZZ → `+`−ν̄ν and ZZ → ν̄νjj.

We have not made any attempt to combine the limits
from different channels. From Table 11 it is clear that
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this would result in a significant improvement of the
bounds.

The sensitivity limits which can be achieved at the
Tevatron in Run II should be compared with the
bounds from recent measurements at LEP2 [146]:

|f
�

4 | < 0.49 |f �

4 | < 0.82 (34)

|f
�

5 | < 1.1 |f
�

5 | < 1.1 (35)

Only one coupling at a time is varied here. (The LEP2
limits do not contain any form factor effects. For the
form and scale chosen here, form factor effects weaken
the limits by about 20%.) In Run II, CDF and DØ will
be able to improve these bounds by at least a factor 4
to 8.

4.6.5. Measuring Form Factors
The limits on anomalous WWV , ZγV and ZZV

couplings all depend on the power, n, and the scale,
Λ � � , of the form factor. These parameters are a pri-
ori unknown. In Ref. [117] it was pointed out that
in final states without missing transverse momentum
one can in principle determine the form factor by mea-
suring the

√
ŝ distribution. For Wγ production, the

longitudinal momentum of the neutrino can only be
reconstructed with a twofold ambiguity. Selecting the
minimum of the two reconstructed values of ŝ, a similar
measurement can be performed in the Wγ case [125].
Alternatively, the photon p � distribution can be used.

In Ref. [127] a detailed study of the method was
performed for W (→ eν, µν)γ production at the LHC.
Assuming λ

�

0 = 0.025, n = 2, Λ � � = 2 TeV and an
integrated luminosity of 300 fb−1, λ

�

0 and Λ � � were
reconstructed using a binned maximum likelihood fit
to the p � (γ) distribution. The power of the form
factor, n = 2, was not varied and no detector simu-
lation was included in the study. The reconstructed
coupling and form factor scale were determined to
λ

�

0 = 0.0295 ± 0.0022 and Λ � � = 1.67 ± 0.22 TeV,
ie. they can be measured with a relative precision
of about 10 – 15%. The central values of the recon-
structed parameters differ by about 20% from the input
parameters. Including detector response, and treating
the form factor power n as an additional free parameter
is expected to increase the relative error.

The study demonstrates that, due to the restricted
number of events in each bin, the method will not pro-
duce competitive limits. However, if non-zero anoma-
lous couplings are observed, the method may be use-
ful in determining the shape of the form factor which
provides indirect information on the dynamics of the
underlying new physics.

At the Tevatron, the limits on the WWV couplings
exhibit only a modest dependence on n and Λ � � . Di-
rect measurement of the form factor will thus be very

difficult for these couplings. The situation is more
promising for ZγV and ZZV couplings, where the
sensitivity bounds depend more strongly on the form
factor parameters.
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92. T. Sjöstrand, Comput. Phys. Commun. 82, 74
(1994).

93. E. Barberio and Z. Was, Comput. Phys. Commun.
79, 291 (1994); E. Barberio, B. van Eijk, and Z.
Was, ibid. 66, 115 (1991).

94. T. Affolder et al.(CDF Collaboration), Phys. Rev.
Lett. 84, 845 (2000).

95. G.A. Ladinsky and C.-P. Yuan, Phys. Rev. D50,
4239 (1994).

96. B. Abbott et al. (DØ Collaboration), Phys. Rev.
D61, 032004 (2000).

97. U. Baur, S. Keller, and W. K. Sakumoto, Phys.
Rev. D57, 199 (1998).

98. F. Abe et al. (CDF Collaboration), Phys. Rev.
D59, 052002 (1999).

99. A. Bodek et al. for the CDF Collaboration, Con-
straints on PDF’s from W and Z Rapidity Distri-
butions at CDF, Fermilab-Conf-99/160-E, to be
published in Proceedings, 7

� �
International Con-

ference on Deep Inelastic Scattering and QCD
(DIS 99), DESY, Zeuthen, Germany, 19 – 24 April
1999.

100. G. Arnison et al. (UA1 Collaboration), Phys. Lett.
B122, 103 (1983).

101. G. Arnison et al. (UA1 Collaboration), Phys. Lett.
B126, 398 (1983).

102. G. Banner et al. (UA1 Collaboration), Phys. Lett.
B122, 476 (1983).

103. P. Bagnaia et al. (UA1 Collaboration), Phys. Lett.
B129, 130 (1983).

104. J. Alitti et al. (UA2 Collaboration), Phys. Lett.
B186, 452 (1987).

105. J. Alitti et al. (UA2 Collaboration), Z. Phys. C49,
17 (1991).

106. M. Carena et al., Report of the Higgs Working
Group, Fermilab Supersymmetry/Higgs Run II
Workshop (1998).

107. U. Baur and E.L. Berger, Phys. Rev. D47, 4889
(1993).

108. E. Mirkes, Nucl. Phys. B387, 3 (1992).
109. J.C. Collins and D.E. Soper, Phys. Rev. D16,

2219 (1977).
110. M.I. Martin, Measurement of the Angular Distri-

bution of the Electron fromW → eν decay in pp at√
s= 1.8 TeV as Function of p

�
� , PhD thesis, Uni-

164



versidad de Zaragoza, Spain, 1994 (unpublished).
111. G. Steinbrück, Measurement of the Angular Dis-

tribution of Electrons from W Boson Decays at
DØ , PhD thesis, University of Oklahoma, Nor-
man, Oklahoma, 1999 (unpublished).

112. K. Hagiwara, R. D. Peccei, D. Zeppenfeld and
K. Hikasa, Nucl. Phys. B282, 253 (1987).

113. U. Baur and D. Zeppenfeld, Nucl. Phys. B308,
127 (1988).

114. G. Gounaris et al., in Physics at LEP2, edited by
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INTRODUCTION

With Run II and its large increase in integrated lu-
minosity, the Tevatron will enter an era of high pre-
cision measurements. In this era, parton distribution
function (PDF) uncertainties will play a major role.

The basic questions for PDFs at the Tevatron Run II
are simple and common to all other experiment:

• What limitations will the PDFs put on physics
analysis?

• What information can we gain about the PDFs?

There are some qualitative tools that exists and can be
used to try to answer these questions. However, beside
S. Alekhin’s pioneer work [1], quantitative tools that
attempt to include all sources of uncertainties are not
available yet. The main focus of this working group has
therefore been to investigate the different issues asso-
ciated with the development of those tools, although
obviously other topics have also been investigated.

We have divided this summary of activities into in-
dividual contributions:

• UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLI-
CATION ON PHYSICAL PREDICTIONS.
R. Brock et al. describe preliminary results from
an effort to quantify the uncertainties in PDFs
and the resulting uncertainties in predicted phys-
ical quantities. The production cross section of
the W boson is given as a first example.

• PARTON DISTRIBUTION FUNCTION UN-
CERTAINTIES. Giele et al. review the status
of their effort to extract PDFs from data with a
quantitative estimate of the uncertainties.

• EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE INCLUSIVE

JET CROSS SECTION. R. Hirosky summarizes
the current CDF and D0 analysis for the inclusive
jet cross sections. So far the uncertainties have
been assumed to be Gaussian distributed. He
investigates what information can be extracted
about the shape of the uncertainties with the goal
of being able to provide a way to calculate the
Likelihood.

• PARTON DENSITY UNCERTAINTIES AND
SUSY PARTICLE PRODUCTION. T. Plehn
and M. Krämer study the current status of PDF’s
uncertainties on SUSY particle mass bounds or
mass determinations.

• SOFT-GLUON RESUMMATION AND PDF
THEORY UNCERTAINTIES. G. Sterman and
W. Vogelsang discuss the interplay of higher or-
der corrections and PDF determinations, and the
possible use of soft-gluon resummation in global
fits.

• PARTON DISTRIBUTION FUNCTIONS: EX-
PERIMENTAL DATA AND THEIR INTER-
PRETATION. L. de Barbaro review current is-
sues in the interpretation of experimental data
and the outlook for future data.

• HEAVY QUARK PRODUCTION. Olness et al.
present a status report of a variety of projects
related to heavy quark production.

• PARTON DENSITIES FOR HEAVY QUARKS.
J. Smith compares different PDFs for heavy
quarks.

• CONSTRAINTS ON THE GLUON DEN-
SITY FROM LEPTON PAIR PRODUCTION.
E. L. Berger and M. Klasen study the sensitiv-
ity of the hadroproduction of lepton pairs to the
gluon density.
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Note that the individual references are at the end of
the corresponding contribution. The references for the
introduction and the conclusion are at the end.

UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLICA-
TIONS ON PHYSICAL PREDICTIONS

R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin,
D. Stump, W.K. Tung

Department of Physics and Astronomy, Michigan
State University, East Lansing, MI 48824

Abstract

We describe preliminary results from an effort to quan-
tify the uncertainties in parton distribution functions
and the resulting uncertainties in predicted physical
quantities. The production cross section of the W
boson is given as a first example. Constraints due to
the full data sets of the CTEQ global analysis are used
in this study. Two complementary approaches, based
on the Hessian and the Lagrange multiplier method
respectively, are outlined. We discuss issues on ob-
taining meaningful uncertainty estimates that include
the effect of correlated experimental systematic uncer-
tainties and illustrate them with detailed calculations
using one set of precision DIS data.

1. Introduction

Many measurements at the Tevatron rely on parton
distribution functions (PDFs) for significant portions
of their data analysis as well as the interpretation of
their results. For example, in cross section measure-
ments the acceptance calculation often relies on Monte
Carlo (MC) estimates of the fraction of unobserved
events. As another example, the measurement of the
mass of the W boson depends on PDFs via the mod-
eling of the production of the vector boson in MC. In
such cases, uncertainties in the PDFs contribute, by
necessity, to uncertainties on the measured quantities.
Critical comparisons between experimental data and
the underlying theory are often even more dependent
upon the uncertainties in PDFs. The uncertainties on
the production cross sections for W and Z bosons, cur-
rently limited by the uncertainty on the measured lu-
minosity, are approximately 4%. At this precision, any
comparison with the theoretical prediction inevitably
raises the question: How “certain” is the prediction
itself?

A recent example of the importance of PDF uncer-
tainty is the proper interpretation of the measurement
of the high-E � jet cross-section at the Tevatron. When
the first CDF measurement was published [1], there
was a great deal of controversy over whether the ob-
served excess, compared to theory, could be explained
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by deviations of the PDFs, especially the gluon, from
the conventionally assumed behavior, or could it be the
first signal for some new physics [2].

With the unprecedented precision and reach of many
of the Run I measurements, understanding the im-
plications of uncertainties in the PDFs has become
a burning issue. During Run II (and later at LHC)
this issue may strongly affect the uncertainty estimates
in precision Standard Model studies, such as the all
important W -mass measurement, as well as the signal
and background estimates in searches for new physics.

In principle, it is the uncertainties on physical quan-
tities due to parton distributions, rather than on the
PDFs themselves, that is of primary concern. The
latter are theoretical constructs which depend on the
renormalization and factorization schemes; and there
are strong correlations between PDFs of different fla-
vors and from different values of x, which can compen-
sate each other in the convolution integrals that relate
them to physical cross-sections. On the other hand,
since PDFs are universal, if we can obtain meaningful
estimates of their uncertainties based on analysis of
existing data, then the results can be applied to all
processes that are of interest in the future. [3,4]

One can attempt to assess directly the uncertainty
on a specific physical prediction due to the full range
of PDFs allowed by available experimental constraints.
This approach will provide a more reliable estimate for
the range of possible predictions for the physical vari-
able under study, and may be the best course of action
for ultra-precise measurements such as the mass of the
W boson or the W production cross-section. However,
such results are process-specific and therefore the anal-
ysis must be carried out for each case individually.

Until recently, the attempts to quantify either the
uncertainties on the PDFs themselves (via uncertain-
ties on their functional parameters, for instance) or
the uncertainty on derived quantities due to variations
in the PDFs have been rather unsatisfactory. Two
commonly used methods are: (1) Comparing the pre-
dictions obtained with different PDF sets, e.g., various
CTEQ [5], MRS [6] and GRV [7] sets; (2) Within a
given global analysis effort, varying individual func-
tional parameters ad hoc, within limits considered to
be consistent with the existing data, e.g. [8]. Neither
method provides a systematic, quantitative measure of
the uncertainties of the PDFs or their predictions.

As a case in point, Fig. 1 shows how the calculated
value of the cross section for W boson production at
the Tevatron varies with a set of historical CTEQ
PDFs as well as the most recent CTEQ [5] and MRST
[6] sets. Also shown are the most recent measurements
from DØ and CDF†. While it is comforting to see that

†It is interesting to note that much of the difference between the
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Figure 1. Predicted cross section for W boson produc-
tion for various PDFs.

the predictions have remained within a narrow range,
the variation observed cannot be characterized as a
meaningful estimate of the uncertainty: (i) the varia-
tion with time reflects mostly the changes in experi-
mental input to, or analysis procedure of, the global
analyses; and (ii) the perfect agreement between the
values of the most recent CTEQ5M1 ‡ and MRS99 sets
must be fortuitous, since each group has also obtained
other satisfactory sets which give rise to much larger
variations of the W cross section. The MRST group, in
particular has examined the range of this variation by
setting a variety of parameters to some extreme values
[8]. These studies are useful but can not be considered
quantitative or definitive. What is needed are methods
that explore thoroughly the possible variations of the
parton distribution functions.

It is important to recognize all potential sources of
uncertainty in the determination of PDFs. Focusing
on some of these, while neglecting significant others,
may not yield practically useful results. Sources of
uncertainty are listed below:

• Statistical uncertainties of the experimental data
used to determine the PDFs. These vary over a wide
range among the experiments used in a global analy-
sis, but are straightforward to treat.

• Systematic uncertainties within each data set.

DØ and CDF W cross sections is due to the different values of
the total pp̄ cross sections used
‡CTEQ5M1 is an updated version of CTEQ5M differing only
in a slight improvement in the QCD evolution (cf. note added
in proof of [5]). The differences are completely insignificant for
our purposes. Henceforth, we shall refer to them generically
as CTEQ5M. Both sets can be obtained from the web address
http://cteq.org/.
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There are typically many sources of experimental sys-
tematic uncertainty, some of which are highly corre-
lated. These uncertainties can be treated by standard
methods of probability theory provided they are pre-
cisely known, which unfortunately is often not the
case – either because they may not be randomly dis-
tributed and/or because their estimation in practice
involves subjective judgments.

• Theoretical uncertainties arising from higher-
order PQCD corrections, resummation corrections
near the boundaries of phase space, power-law (higher
twist) and nuclear target corrections, etc.

• Uncertainties due to the parametrization of the
non-perturbative PDFs, f � (x,Q0), at some low
momentum scale Q0. The specific choice of the func-
tional form used at Q0 introduces implicit correla-
tions between the various x-ranges, which could be
as important, if not more so, than the experimental
correlations in the determination of f � (x,Q) for all
Q.

Since strict quantitative statistical methods are
based on idealized assumptions, such as random mea-
surement uncertainties, an important trade-off must be
faced in devising a strategy for the analysis of PDF
uncertainties. If emphasis is put on the “rigor” of the
statistical method, then many important experiments
cannot be included in the analysis, either because the
published errors appear to fail strict statistical tests
or because data from different experiments appear to
be mutually exclusive in the parton distribution pa-
rameter space [4]. If priority is placed on using the
maximal experimental constraints from available data,
then standard statistical methods may not apply, but
must be supplemented by physical considerations, tak-
ing into account experimental and theoretical limita-
tions. We choose the latter tack, pursuing the determi-
nation of the uncertainties in the context of the current
CTEQ global analysis. In particular, we include the
same body of the world’s data as constraints in our
uncertainty study as that used in the CTEQ5 analy-
sis; and adopt the “best fit” – the CTEQ5M1 set – as
the base set around which the uncertainty studies are
performed. In practice, there are unavoidable choices
(and compromises) that must be made in the analysis.
(Similar subjective judgments often are also necessary
in estimating certain systematic errors in experimental
analyses.) The most important consideration is that
quantitative results must remain robust with respect
to reasonable variations in these choices.

In this Report we describe preliminary results ob-
tained by our group using the two approaches men-
tioned earlier. In Section 3 we focus on the error
matrix, which characterizes the general uncertainties

of the non-perturbative PDF parameters. In Sections
4 and 5 we study specifically the production cross sec-
tion σ � for W± bosons at the Tevatron, to estimate
the uncertainty of the prediction of σ � due to PDF
uncertainty. We start in Section 2 with a review of
some aspects of the CTEQ global analysis on which
this study is based.

2. Elements of the Base Global Analysis

Since our strategy is based on using the existing
framework of the CTEQ global analysis, it is useful
to review some of its features pertinent to the current
study [5].

Data selection:

Table 1 shows the experimental data sets included in
the CTEQ5 global analysis, and in the current study.
For neutral current DIS data only the most accurate
proton and deuteron target measurements are kept,
since they are the “cleanest” and they are already
extremely extensive. For charged current (neutrino)
DIS data, the significant ones all involve a heavy (Fe)
target. Since these data are crucial for the deter-
mination of the normalization of the gluon distribu-
tion (indirectly via the momentum sum rule), and for
quark flavor differentiation (in conjunction with the
neutral current data), they play an important role in
any comprehensive global analysis. For this purpose, a
heavy-target correction is applied to the data, based on
measured ratios for heavy-to-light targets from NMC
and other experiments. Direct photon production data
are not included because of serious theoretical uncer-
tainties, as well as possible inconsistencies between ex-
isting experiments. Cf. [5] and [9]. The combination of
neutral and charged DIS, lepton-pair production, lep-
ton charge asymmetry, and inclusive large-p � jet pro-
duction processes provides a fairly tightly constrained
system for the global analysis of PDFs. In total, there
are ∼1300 data points which meet the minimum mo-
mentum scale cuts which must be imposed to ensure
that PQCD applies. The fractional uncertainties on
these points are distributed roughly like dF/F over
the range F = 0.003− 0.4.

Parametrization:

The non-perturbative parton distribution functions
f � (x,Q) at a low momentum scale Q = Q0 are
parametrized by a set of functions of x, corresponding
to the various flavors a. For this analysis,Q0 is taken to
be 1 GeV. The specific functional forms and the choice
of Q0 are not important, as long as the parametriza-
tion is general enough to accommodate the behavior of
the true (but unknown) non-perturbative PDFs. The
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Process Experiment Measurable N � � � �

DIS BCDMS[10] F
�

2 � , F
�

2 � 324
NMC [11] F

�

2 � , F
�

2 � 240
H1 [12] F

�

2 � 172
ZEUS[13] F

�

2 � 186
CCFR [14] F

�

2 � � , x F
�

3 � � 174
Drell-Yan E605[15] sdσ/d

√
τdy 119

E866 [16] σ(pd)/2σ(pp) 11
NA-51[17] A � � 1

W-prod. CDF [18] Lepton asym. 11

Incl. Jet CDF [19] dσ/dE � 33
D0[20] dσ/dE � 24

Table 1
List of processes and experiments used in the
CTEQ5M Global analysis. The total number of data
points is 1295.

CTEQ analysis adopts the functional form

a0x
�
1(1− x)

�
2(1 + a3x

�
4).

for most quark flavors as well as for the gluon.§ After
momentum and quark number sum rules are enforced,
there are 18 free parameters left over, hereafter referred
to as “shape parameters” {a � }. The PDFs at Q > Q0

are determined from f � (x,Q0) by evolution equations
from the renormalization group.

Fitting:

The values of {a � } are determined by fitting the
global experimental data to the theoretical expressions
which depend on these parameters. The fitting is done
by minimizing a global “chi-square” function, χ2

global.
The quotation mark indicates that this function serves
as a figure of merit of the quality of the global fit; it
does not necessarily have the full significance associ-
ated with rigorous statistical analysis, for reasons to
be discussed extensively throughout the rest of this
report. In practice, this function is defined as:

χ2
global =

∑
�

∑

�
w �
[
(N � d � � − t � � ) /σ

�

� �
]2

+
∑

�

[
(1−N � ) /σ

�

�
]2

(1)

where d � � , σ
�

� � , and t � � denote the data, measurement
uncertainty, and theoretical value (dependent on {a � })
for the ith data point in the nth experiment. The
second term allows the absolute normalization (N � )

§An exception is that recent data from E866 seem to require the
ratio d̄/ū to take a more unconventional functional form.

for each experiment to vary, constrained by the pub-
lished normalization uncertainty (σ

�

� ). The w � fac-
tors are weights applied to some critical experiments
with very few data points, which are known (from
physics considerations) to provide useful constraints
on certain unique features of PDFs not afforded by
other experiments. Experience shows that without
some judiciously chosen weights, these experimental
data points will have no influence in the global fitting
process. The use of these weighing factors, to enable
the relevant unique constraints, amounts to imposing
certain prior probability (based on physics knowledge)
to the statistical analysis.

In the above form, χ2
global includes for each data

point the random statistical uncertainties and the com-
bined systematic uncertainties in uncorrelated form, as
presented by most experiments in the published pa-
pers. These two uncertainties are combined in quadra-
ture to form σ

�

� � in Eq. 1. Detailed point to point
correlated systematic uncertainties are not available
in the literature in general; however, in some cases,
they can be obtained from the experimental groups.
For global fitting, uniformity in procedure with respect
to all experiments favors the usual practice of merg-
ing them into the uncorrelated uncertainties. For the
study of PDF uncertainties, we shall discuss this issue
in more detail in Section 5.

Goodness-of-fit for CTEQ5M:

Without going into details, Fig. 2 gives an overview
of how well CTEQ5m fits the total data set. The graph
is a histogram of the variable x ≡ (d− t)/σ where d is
a data value, σ the uncertainty of that measurement
(statistical and systematic combined), and t the theo-
retical value for CTEQ5m. The curve in Fig. 2 has no
adjustable parameters; it is the Gaussian with width 1
normalized to the total number of data points (1295).
Over the entire data set, the theory fits the data within
the assigned uncertainties σ

�

� � , indicating that those
uncertainties are numerically consistent with the ac-
tual measurement fluctuations. Similar histograms for
the individual experiments reveal various deviations
from the theory, but globally the data have a reasonable
Gaussian distribution around CTEQ5M.

3. Uncertainties on PDF parameters: The Er-
ror Matrix

We now describe results from an investigation of the
behavior of the χ2

global function at its minimum, using
the standard error matrix approach [21]. This allows
us to determine which combinations of parameters are
contributing the most to the uncertainty.

At the minimum of χ2
global, the first derivatives with
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Figure 2. Histogram of the (measurement − theory)
for all data points in the CTEQ5m fit.

respect to the {a � } are zero; so near the minimum,
χ2

global can be approximated by

χ2
global = χ2

0 +
1

2

∑

� � �
F � � y � y � (2)

where y � = a � − a0 � is the displacement from the min-
imum, and F � � is the Hessian, the matrix of second
derivatives. It is natural to define a new set of coor-
dinates using the complete orthonormal set of eigen-
vectors of the symmetric matrix F � � as basis vectors.
These vectors can be ordered by their eigenvalues e � .
Each eigenvalue is a quantitative measure of the uncer-
tainties in the shape parameters {a � } for displacements
in parameter space in the direction of the correspond-
ing eigenvector. The quantity ` � ≡ 1/

√
e � is the dis-

tance in the 18 dimensional parameter space, in the
direction of eigenvector i, that makes a unit increase
in χ2

global. If the only measurement uncertainty were
uncorrelated gaussian uncertainties, then ` � would be
one standard deviation from the best fit in the direction
of the eigenvector. The inverse of the Hessian is the
error matrix.

Because the real uncertainties, for the wide variety
of experiments included, are far more complicated than
assumed in the ideal situation, the quantitative mea-
sure of a given increase in χ2
�� � � � � carries little true sta-
tistical meaning. However, qualitatively, the Hessian
gives an analytic picture of χ2

global near its minimum in
{a � } space, and hence allows us to identify the partic-
ular degrees of freedom that need further experimental
input in future global analyses.

From calculations of the Hessian we find that the
eigenvalues vary over a wide range. Figure 3 shows

3 6 9 12 15
eigenvector #

0.003
0.01
0.03

0.1
0.3

1

1�
�
!!!!
!

e i

jonsevs.nb 1

Figure 3. Plot of the eigenvalues of the Hessian. The
vertical axis is ` � = 1/

√
e � .

a graph of the eigenvalues of F � � , on a logarithmic
scale. The vertical axis is ` � = 1/

√
e � , the distance of a

“standard deviation” along the ith eigenvector. These
distances range over 3 orders of magnitude.Large eigen-
values of F � � correspond to “steep directions” of χ2

global.
The corresponding eigenvectors are combinations of
shape parameters that are well determined by current
data. For example, parameters that govern the valence
u and d quarks at moderate x are sharply constrained
by DIS data. Small eigenvalues of F � � correspond to
“flat directions” of χ2

global. In the directions of these

eigenvectors, χ2
global changes little over large distances

in {a � } space. For example, parameters that govern
the large-x behavior of the gluon distribution, or dif-
ferences between sea quarks, properties of the nucleon
that are not accurately determined by current data,
contribute to the flat directions. The existence of flat
directions is inevitable in global fitting, because as the
data improve it only makes sense to maintain enough
flexibility for f � (x,Q0) to fit the available experimental
constraints.

Because the eigenvalues of the Hessian have a large
range of values, efficient calculation of F � � requires an
adaptive algorithm. In principle F � � is the matrix of
second derivatives at the minimum of χ2

global, which
could be calculated from very small finite differences.
In practice, small computational errors in the evalua-
tion of χ2

global preclude the use of a very small step size.
Coarse grained finite differences yield a more accurate
calculation of the second derivatives. But because the
variation of χ2

global varies markedly in different direc-
tions, it is important to use a grid in {a � } space with
small steps in steep directions and large steps in flat
directions. This grid is generated by an iterative pro-
cedure, in which F � � converges to a good estimate of
the second derivatives.

From calculations of F � � we find that the minimum
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Χ2 along eigenvectors # 1-6HE from eps=0.05 for 5mN31L
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Figure 4. Value of χ2 along the six eigenvectors with
the largest eigenvalues.

of χ2
global is fairly quadratic over large distances in the

parameter space. Figures 4 and 5 show the behavior

Χ2 along eigenvectors # 7-18HE from eps=0.05 for 5mN31L
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Figure 5. Value of χ2 along the 12 eigenvectors with
the smallest eigenvalues.

of χ2
global near the minimum along each of the 18 eigen-

vectors. χ2
global is plotted on the vertical axis, and the

variable on the horizontal axis is the distance in {a � }
space in the direction of the eigenvector, in units of
` � = 1/

√
e � . There is some nonlinearity, but it is small

enough that the Hessian can be used as an analytic
model of the functional dependence of χ2

global on the

shape parameters.
In a future paper we will provide details on the

uncertainties of the original shape parameters {a � }.
But it should be remembered that these parameters
specify the PDFs at the low Q scale, and applications
of PDFs to Tevatron experiments use PDFs at a high
Q scale. The evolution equations determine f(x,Q)
from f(x,Q0), so the functional form at Q depends on
the {a � } in a complicated way.

4. Uncertainty on σ � : the Lagrange Multiplier
Method

In this Section, we determine the variation of χ2
global

as a function of a single measurable quantity. We
use the production cross section for W bosons (σ � )
as an archetype example. The same method can be
applied to any other physical observable of interest,
for instance the Higgs production cross section, or to
certain measured differential distributions. The aim is
to quantify the uncertainty on that physical observable
due to uncertainties of the PDFs integrated over the
entire PDF parameter space.

Again, we use the standard CTEQ5 analysis tools
and results [5] as the starting point. The “best fit” is
the CTEQ5M1 set. A natural way to find the limits of
a physical quantity X , such as σ � at

√
s = 1.8 TeV, is

to take X as one of the search parameters in the global
fit and study the dependence of χ2

global for the 15 base
experimental data sets on X .

Conceptually, we can think of the function χ2
global

that is minimized in the fit as a function of
a1, . . . , a17, X instead of a1, . . . , a18. This idea could
be implemented directly in principle, but a more con-
venient way to do the same thing in practice is through
Lagrange’s method of undetermined multipliers. One
minimizes, with respect to the {a � }, the quantity

F (λ) = χ2
global + λX(a1, . . . , a18) (3)

for a fixed value of λ, the Lagrange multiplier. By min-
imizing F (λ) for many values of λ, we map out χ2

global

as a function ofX . The minimum of F for a given value
of λ is the best fit to the data for the corresponding
value of X , i.e., evaluated at the minimum.

Figure 6 shows χ2
global for the 15 base experimental

data sets as a function of σ � at the Tevatron. The
horizontal axis is σ � times the branching ratio for
W → leptons, in nb. The CTEQ5m prediction is
σ � · BRlep = 2.374 nb. The vertical dashed lines
are ±3% and ±5% deviations from the CTEQ5m pre-
diction.

The two parabolas associated with points in Fig. 6
correspond to different treatments of the normalization
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Figure 6. χ2 of the base experimental data sets ver-
sus σ � ·BRlep, the W production cross-section at the
Tevatron times lepton branching ratio, in nb.

factor N � in Eq. 1. The dots (•) are variable norm fits,
in which N � is allowed to float, taking into account the
experimental normalization uncertainties, and F (λ) is
minimized with respect to N � . The justification for
this procedure is that overall normalization is a com-
mon systematic uncertainty. The boxes (2) are fixed
norm fits, in which all N � are held fixed at their values
for the global minimum (CTEQ5m). These two proce-
dures represent extremes in the treatment of normal-
ization uncertainty. The parabolas associated with •’s
and 2’s are just least-square fits to the points.

The other curve in Fig. 6 was calculated using the
Hessian method. The Hessian F � � is the matrix of
second derivatives of χ2

global with respect to the shape
parameters {a � }. The derivatives (first and second) of
σ � may also be calculated by finite differences. Using
the resultant quadratic approximations for χ2

global(a)

and σ � (a), one may minimize χ2
global with σ � fixed.

Since this calculation keeps the normalization factors
constant, it should be compared with the fixed norm
fits from the Lagrange multiplier method. The fact
that the Hessian and Lagrange multiplier methods
yield similar results lends support to both approaches;
the small difference between them indicates that the
quadratic functional approximations for χ2

global and
σ � are only approximations.

For the quantitative analysis of uncertainties, the
important question is: How large an increase in χ2

global

should be taken to define the likely range of uncertainty
in X? There is an elementary statistical theorem that
states that ∆χ2 = 1 in a constrained fit corresponds

to 1 standard deviation of the constrained quantity X .
However, the theorem relies on the assumption that the
uncertainties are gaussian, uncorrelated, and correctly
estimated in magnitude. Because these conditions do
not hold for the full data set (of ∼ 1300 points from 15
different experiments), this theorem cannot be naively
applied quantitatively.¶ Indeed, it can be shown that,
if the measurement uncertainties are correlated, and
the correlation is not properly taken into account in
the definition of χ2

global, then a standard deviation may

vary over the entire range from ∆χ2 = 1 to ∆χ2 = N
(the total number of data points – ∼ 1300 in our case).

5. Statistical Analysis with Systematic Uncer-
tainties

Fig. 6 shows how the fitting function χ2
global increases

from its minimum value, at the best global fit, as the
cross-section σ � for W production is forced away from
the prediction of the global fit. The next step in our
analysis of PDF uncertainty is to use that information,
or some other analysis, to estimate the uncertainty in
σ � . In ideal circumstances we could say that a certain
increase of χ2

global from the minimum value, call it ∆χ2,
would correspond to a standard deviation of the global
measurement uncertainty. Then a horizontal line on
Fig. 6 at χ2

min+∆χ2 would indicate the probable range
of σ � , by the intersection with the parabola of χ2

global

versus σ � .
However, such a simple estimate of the uncertainty

of σ � is not possible, because the fitting function
χ2

global does not include the correlations between sys-

tematic uncertainties. The uncertainty σ
�

� � in the defi-
nition (1) of χ2

global combines in quadrature the statis-
tical and systematic uncertainties for each data point;
that is, it treats the systematic uncertainties as uncor-
related. The standard theorems of statistics for Gaus-
sian probability distributions of random uncertainties
do not apply to χ2

global.

Instead of using χ2
global to estimate confidence levels

on σ � , we believe the best approach is to carry out a
thorough statistical analysis, including the correlations
of systematic uncertainties, on individual experiments
used in the global fit for which detailed information is
available. We will describe here such an analysis for
the measurements of F2(x,Q) by the H1 experiment
[12] at HERA, as a case study. In a future paper, we
will present similar calculations for other experiments.

The H1 experiment has provided a detailed table
of measurement uncertainties – statistical and system-
atic – for their measurements of F2(x,Q). [12] The

¶It has been shown by Giele et.al. [4], that, taken literally, only
one or two selected experiments satisfy the standard statistical
tests.
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CTEQ program uses 172 data points from H1 (requir-
ing the cut Q2 > 5 GeV2). For each measurement d �

(where j = 1 . . . 172) there is a statistical uncertainty
σ0

� , an uncorrelated systematic uncertainty σ1
� , and a

set of 4 correlated systematic uncertainties a �	� where
k = 1 . . . 4. (In fact there are 8 correlated uncertain-
ties listed in the H1 table. These correspond to 4
pairs. Each pair consists of one standard deviation
in the positive sense, and one standard deviation in
the negative sense, of some experimental parameter.
For this first analysis, we have approximated each pair
of uncertainties by a single, symmetric combination,
equal in magnitude to the average magnitude of the
pair.)

To judge the uncertainty of σ � , as constrained by
the H1 data, we will compare the H1 data to the global
fits in Fig. 6. The comparison is based on the true,
statistical χ2, including the correlated uncertainties,
which is given by

χ2 =
∑
�

(d � − t � )2

σ2�
−
∑
� � ′

B � (A−1
)
� � ′ B

� ′ .
(4)

The index j labels the data points and runs from 1 to
172. The indices k and k′ label the source of systematic
uncertainty and run from 1 to 4. The combined uncor-

related uncertainty σ � is
√
σ2

0
� + σ2

1
� . The second term

in (4) comes from the correlated uncertainties. B � is
the vector

B � =
∑
�

(d � − t � ) a �	�
σ2�

, (5)

and A � � ′ is the matrix

A � � ′ = δ � � ′ +
∑
�

a �	� a �	� ′

σ2�
. (6)

Assuming the published uncertainties σ0
� , σ1

� and
a �	� accurately reflect the measurement fluctuations,
χ2 would obey a chi-square distribution if the mea-
surements were repeated many times. Therefore the
chi-square distribution with 172 degrees of freedom
provides a basis for calculating confidence levels for the
global fits in Fig. 6.

Table 2 shows χ2 for the H1 data compared to seven
of the PDF fits in Fig. 6. The center row of the Table
is the global best fit – CTEQ5m. The other rows are
fits obtained by the Lagrange multiplier method for
different values of the Lagrange multiplier. The best
fit to the H1 data, i.e., the smallest χ2, is not CTEQ5m
(the best global fit) but rather the fit with Lagrange
multiplier 1000 for which σ � is 0.8% smaller than the
prediction of CTEQ5m. Forcing the W cross section

Lagrange σ � ·B χ2/172 probability
multiplier in nb

3000 2.294 1.0847 0.212
2000 2.321 1.0048 0.468
1000 2.356 0.9676 0.605

0 2.374 0.9805 0.558
-1000 2.407 1.0416 0.339
-2000 2.431 1.0949 0.187
-3000 2.450 1.1463 0.092

Table 2
Comparison of H1 data to the PDF fits with con-
strained values of σ � .

values away from the prediction of CTEQ5m causes an
increase in χ2 for the DIS data. At

√
s = 1.8 TeV, W

production is mainly from qq̄ → W+W− with moder-
ate values of x for q and q̄, i.e., values in the range
of DIS experiments. Forcing σ � higher (or lower) re-
quires a higher (or lower) valence quark density in the
proton, in conflict with the DIS data, so χ2 increases.

The final column in Table 2, labeled “probability”,
is computed from the chi-square distribution with 172
degrees of freedom. This quantity is the probability
for χ2 to be greater than the value calculated from
the existing data, if the H1 measurements were to be
repeated. So, for example, the fit with Lagrange mul-
tiplier −3000, which corresponds to σ � being 3.2%
larger than the CTEQ5m prediction, has probability
0.092. In other words, if the H1 measurements could
be repeated many times, in only 9.2% of trials would
χ2 be greater than or equal to the value that has been
obtained with the existing data. This probability rep-
resents a confidence level for the value of σ � that was
forced on the PDF by setting the Lagrange multiplier
equal to -3000. At the 9.2% confidence level we can
say that σ � ·BRlep is less than 2.450 nb, based on the
H1 data. Similarly, at the 21.2% confidence level we
can say that σ � · BRlep is greater than 2.294 nb.

Fig. 7 is a graph of χ2/N for the H1 data com-
pared to the PDF fits in Table 2. This figure may
be compared to Fig. 6. The CTEQ5 prediction of
the W production cross-section is shown as an arrow,
and the vertical dashed lines are ±3% away from the
CTEQ5m prediction. The horizontal dashed line is the
68% confidence level on χ2/N for N = 172 degrees of
freedom. The comparison with H1 data alone indicates
that the uncertainty on σ � is ∼ 3%.

There is much more to say about χ2 and confidence
levels. In a future paper we will discuss statistical
calculations for other experiments in the global data
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Figure 7. χ2/N of the H1 data, including error corre-
lations, compared to PDFs obtained by the Lagrange
multiplier method for constrained values of σ � .

set. The H1 experiment is a good case, because for
H1 we have detailed information about the correlated
uncertainties. But it may be somewhat fortuitous that
the χ2 per data point for CTEQ5m is so close to 1
for the H1 data set. In cases where χ2/N is not close
to 1, which can easily happen if the estimated sys-
tematic uncertainties are not textbook-like, we must
supply further arguments about confidence levels. For
experiments with many data points, like 172 for H1,
the chi-square distribution is very narrow, so a small
inaccuracy in the estimate of σ � may translate to a
large uncertainty in the calculation of confidence levels
based on the absolute value of χ2. Because the estima-
tion of experimental uncertainties introduces some un-
certainty in the value of χ2, it is not really the absolute
value of χ2 that is important, but rather the relative
value compared to the value at the global minimum.
Therefore, we might study ratios of χ2’s to interpret
the variation of χ2 with σ � .

6. Conclusions

It has been widely recognized by the HEP commu-
nity, and it has been emphasized at this workshop, that
PDF phenomenology must progress from the past prac-
tice of periodic updating of representative PDF sets to
a systematic effort to map out the uncertainties, both
on the PDFs themselves and on physical observables
derived from them. For the analysis of PDF uncer-
tainties, we have only addressed the issues related to
the treatment of experimental uncertainties. Equally
important for the ultimate goal, one must come to
grips with uncertainties associated with theoretical ap-
proximations and phenomenological parametrizations.
Both of these sources of uncertainties induce highly

correlated uncertainties, and they can be numerically
more important than experimental uncertainties in
some cases. Only a balanced approach is likely to
produce truly useful results. Thus, great deal of work
lies ahead.

This report described first results from two methods
for quantifying the uncertainty of parton distribution
functions associated with experimental uncertainties.
The specific work is carried out as extensions of the
CTEQ5 global analysis. The same methods can be
applied using other parton distributions as the starting
point, or using a different parametrization of the non-
perturbative PDFs. We have indeed tried a variety of
such alternatives. The results are all similar to those
presented above. The robustness of these results lends
confidence to the general conclusions.

The Hessian, or error matrix method reveals the
uncertainties of the shape parameters used in the func-
tional parametrization. The behavior of χ2

global in the
neighborhood of the minimum is well described by the
Hessian if the minimum is quadratic.

The Lagrange multiplier method produces con-
strained fits, i.e., the best fits to the global data set
for specified values of some observable. The increase
of χ2

global, as the observable is forced away from the
predicted value, indicates how well the current data
on PDFs determines the observable.

The constrained fits generated by the Lagrange mul-
tiplier method may be compared to data from individ-
ual experiments, taking into account the uncertainties
in the data, to estimate confidence levels for the con-
strained variable. For example, we estimate that the
uncertainty of σ � attributable to PDFs is ±3%.

Further work is needed to apply these methods
to other measurements, such as the W mass or the
forward-backward asymmetry of W production in pp̄
collisions. Such work will be important in the era of
high precision experiments.
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Abstract

We review the status of our effort to extract parton
distribution functions from data with a quantitative
estimate of the uncertainties.

1. Introduction

The goal of our work is to extract parton distribution
functions (PDF) from data with a quantitative estima-
tion of the uncertainties. There are some qualitative
tools that exist to estimate the uncertainties, see e.g.
Ref. [1]. These tools are clearly not adequate when
the PDF uncertainties become important. One crucial
example of a measurement that will need a quantitative
assessment of the PDF uncertainty is the planned high
precision measurement of the mass of the W -vector bo-
son at the Tevatron. Clearly, quantitative tools along
the line of S. Alekhin’s pioneer work [2] are needed.

The method we have developed in Ref. [3] is flexi-
ble and can accommodate non-Gaussian distributions
for the uncertainties associated with the data and the
fitted parameters as well as all their correlations. New
data can be added in the fit without having to redo the
whole fit. Experimenters can therefore include their
own data into the fit during the analysis phase, as
long as correlation with older data can be neglected.
Within this method it is trivial to propagate the PDF
uncertainties to new observables, there is for example
no need to calculate the derivative of the observable
with respect to the different PDF parameters. The
method also provides tools to assess the goodness of
the fit and the compatibility of new data with current
fit. The computer code has to be fast as there is a large
number of choices in the inputs that need to be tested.

It is clear that some of the uncertainties are difficult
to quantify and It might not be possible to quantify all
of them. All the plots presented here are for illustration
of the method only, our results are preliminary. At the
moment we are not including all the sources of uncer-
tainties and our results should therefore be considered
as lower limits on the PDF uncertainties. Note that all
the techniques we use can be found in books and papers
on statistics [4] and/or in Numerical Recipes [5].
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2. Outline of the Method

We only give a brief overview of the method in this
section. More details are available in Ref.[3]. Our
method follows the Bayesian methodology †. Once
a set of core experiments is selected, a large num-
ber of uniformly distributed sets of parameters λ ≡
λ1, λ2, . . . , λ �

par (each set corresponds to one PDF)
can be generated and the probability density of the set
P (λ) calculated from the likelihood (the probability)
that the predictions based on λ describe the data, see
Ref. [4] and next section.

Knowing P (λ), then for any observable x (or any
quantity that depends on λ) the probability density,
P (x) can be evaluated, and using a Monte Carlo inte-
gration, the average value and the standard deviation
of x can be calculated with the standard expressions:

µ � =

∫ 


�
par∏

� =1

dλ �


 x(λ)P (λ)

σ2� =

∫ 


�
par∏

� =1

dλ �


 (x(λ) − µ � )2P (λ). (1)

If P (x) is Gaussian distributed, then the standard
deviation is a sufficient measure of the PDF uncer-
tainties. If P (x) is not Gaussian distributed, then one
should refer to the distribution itself and not try to
“summarize” it by a single number, all the information
is in the distribution itself. The uncertainties due to
the Monte Carlo can also be calculated with standard
technique.

The above is correct but computationally inefficient,
instead we use a Metropolis algorithm, see Ref. [5], to
generate N � � � unit-weighted PDFs distributed accord-
ing to P (λ). With this set of PDFs, the expressions in
Eq. 1 become:

µ � ≈ 1

N� � �

�
pdf∑

�
=1

x (λ � )

σ2� ≈ 1

N� � �

�
pdf∑

�
=1

(x (λ� )− µ � )
2
. (2)

This is equivalent to importance sampling in Monte
Carlo integration techniques. It is very efficient be-
cause the number of PDFs needed to reach a given
level of accuracy in the evaluation of the integrals is
much smaller than when using a set of PDFs uniformly

†we also plan to present results within the “classical frequentist”
framework [6]

distributed. Given the unit-weighted set of PDFs, a
new experiment can be added to the fit by assigning
a weight (a new probability) to each of the PDFs, us-
ing Bayes’ theorem. The above summations become
weighted. There is no need to redo the whole fit if
there is no correlation between the old and new data.
If we know how to calculate P (λ) properly, the only
uncertainty in the method comes from the Monte-Carlo
integrations.

3. Calculation of P (λ)

Given a set of experimental points {x � } =
x
�

1, x
�

2, . . . , x
�

�
obs

the probability of a set of PDF is in
fact the conditional probability of {λ} given that {x � }
has been measured, this conditional probability can be
calculated using Bayes theorem:

P (λ) = P (λ|x �

) =
P (x

� |λ)

P (x
�

)
P � � � � (λ), (3)

where, as already mentioned, the prior distribution
of the parameters, P � � � � (λ), has been assumed to be
uniform. A prior sensitivity should be performed.
P (x

� |λ) is the likelihood, the probability to observe the
data given that the theory is fixed by the set of {λ} .
P (x

�

) is the probability density of the data (integrated
over the PDFs) and act as a normalization coefficient
in Eq. 3.

If all the uncertainties are Gaussian distributed, then
it is well known that:

P (x
� |λ) ≈ e−χ

2(λ)
2 , (4)

where χ2 is the usual chi-square:

χ2(λ) =

�
obs∑
�

�
�

(
x
�
� − x � � (λ)

)
M

� � ����
(
x
�
� − x �� (λ)

)
,
(5)

x
� � (λ) are the theory prediction for the experimen-

tal observables calculated with the parameters {λ} .
The matrix M

� � �
is the inverse of the total covariance

matrix.
When the uncertainties are not Gaussian dis-

tributed, the result is not as well known. We first
present two simple examples to illustrate how the like-
lihood should be calculate and then give a generaliza-
tion.

3.1. The simplest example
We first consider the simplest example to setup the

notation, one experimental point with a statistical un-
certainty:
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x
�
(λ) = x

�

+ u∆, (6)

where u is a random variable that has it own dis-
tribution, f(u) (assumed to be Gaussian in this case).
By convention, we take the average of u equal to 0
and its standard deviation equal to 1. ∆ gives the size
of the statistical uncertainty. For each experimental
measurement there is a different value of u and x

�

.
The probability to find x

�

in an element of length dx
�

given that the theory is fixed by {λ} is equal to the
probability to find u in a corresponding element of
length du‡:

P (x
� |λ)dx

�

= f(u)du. (7)

The variable u and the Jacobian for the change of
variable from u to x

�

can be extracted from Eq. 6:

u =
x

�
(λ)− x �

∆
;

∣∣∣∣
du

dx
�

∣∣∣∣ =
1

∆
(8)

such that:

P (x
� |λ) =

f(
� t( �

)− � e
∆ )

∆

=
1√

2π∆
e−

(xt−xe)2

2∆2 . (9)

This is the expected result.

3.2. A simple example
We now consider the case of one experimental point

with a statistical and a systematic uncertainty:

x
�
(λ) = x

�

+ u1∆1 + u2∆2 (10)

∆1 and ∆2 give the size of the uncertainties. u1

and u2 have their own distribution f1(u1) and f2(u2)
and we use the same convention for their average and
standard deviation as for u in the first example. This
time for each experimental measurement, there is an
infinite number of sets of u1, u2 that correspond to
it, because there is only one equation that relate x

�
,

x
�

and u1 and u2. The probability to find x
�

in an
element of length dx

�

given that the theory is fixed by
{λ} is here equal to the probability to find u1 and u2

‡the repetition of the experiment will only be distributed ac-
cording to u around the true nature value of xt. However we are
trying to calculate the likelihood, the conditional probability of
the data given that the true nature value of xt is given by the
value of the {λ} under study

in a corresponding element of area du1 du2, with an
integration over one of the two variables:

P (x
� |λ)dx

�

= du1

∫
du2f

1(u1)f2(u2). (11)

We choose to integrate over u2. u1 and the Jacobian
for the change of variable from u1 to x

�

are given by
Eq. 10:

u1 =
x

� − x � − u2∆2

∆1
;

∣∣∣∣
du1

dx
�

∣∣∣∣ =
1

∆1
(12)

such that:

P (x
� |λ) =

∫
du2f

2(u2)
f1(

� t− � e− �
2∆2

∆1
)

∆1
(13)

If both f1(u1) and f2(u2) are Gaussian distribution
then we recover the expected result, as in Eq 4. Note
that this expected result is recovered if the uncertain-
ties are Gaussian distributed and the relationship be-
tween the theory, the data and the uncertainties are
given by Eq. 10. If that relationship is more complex
there is no guarantee to recover Eq. 4. In the general
case, the integral in Eq. 13 has to be done numerically.

3.3. Generalization:
We are now ready to give a generalization of the

calculation of the likelihood. We are considering N �
� �

observables, and N � � � uncertainties (statistical and
systematic) parametrized by N � � � random variables
{u} = u1, u2, . . . , u �

unc with their own distributions,
f � (u � ).

There areN �
� � relations between {x � }, {x � } and {u},

one for each observable:

F � (x
�

� , {x �
(λ)}, {u}) = 0. (14)

This givesN � � � −N �
� � independent u � that we choose

by convenience to be the u′� s corresponding to the
systematic uncertainties. Without loosing generality
we assume that there is one statistical uncertainty
for each observable, and we organize the correspond-
ing u � with the same index as x

�

� , such that the last
N � � � (= N � � � − N �

� � ) u � are the random variables for
the systematic uncertainties. For each set of measured
{x � } there is an infinite number of {u} sets that cor-
respond to it.

The probability to find {x � } in an element of volume∏ �
obs

� =1 dx
�

� given that the theory is fixed by {λ} is equal
to the probability to find the {u} in a corresponding

178



element of volume
∏ �

unc
� =1 dx

�
, with an integration over

the independent u � § :

P ({x � }|λ)

�
obs∏

� =1

dx
�

� = (

�
obs∏

�
=1

du � )

∫
(

�
unc∏

� = �
obs+1

du � )

∗
�
unc∏

�
=1

f
�
(u � ) (15)

The values of the {u � , i = 1, N �
� � } (corresponding to

the statistical uncertainties) and the Jacobian, J(u→
x
�

), for the change of variable from those u � to the
x
�

� can be extracted from the N �
� � relations in Eq. 14.

The likelihood is then given by:

P ({x � }|λ) =

∫
(

�
unc∏

� = �
obs+1

du � )

�
unc∏

�
=1

f
�
(u � )J(u→ x

�

) (16)

Often, the F � relationship in Eq 14 have a simple
dependence on {x � } and the u′s corresponding to the
statistical uncertainties:

F � (x
�

� , {x �
(λ)}, {u}) = x

�

� + u � ∆ � + · · · , (17)

where the ∆ � are the size of the statistical uncertain-
ties. In that case, the Jacobian is simply given by:

J(u→ x
�

) =

�
obs∏

� =1

1

∆ �
(18)

In most cases, the likelihood will not be analytically
calculable, and has to be calculated numerically again
with Monte Carlo technique.

In order to be able to calculate the likelihood we
therefore need:

• the relations between {x � }, {x � } and {u} as in
Eq. 14.

• the probability distribution of the random vari-
able associated with the uncertainties: f

�
(u � ).

Unfortunately most of the time that information is
not reported by the experimenters, and/or is not avail-
able and certainly difficult to extract from papers. It is
only in the case that all the uncertainties are Gaussian
distributed ¶ that it is sufficient to report the size of the

§if there are correlations between the ui replace
∏Nunc
j=1

fj(uj)

by f(u1, u2, ..., uNobs) the global probability distribution of the
{u}
¶or can be considered as Gaussian distributed, see later

uncertainties and their correlation ‖. This is a very im-
portant issue, simply put, experiments should always
provide a way to calculate the likelihood, P ({x � }|λ).
This last fact was also the unanimous conclusion of a
recent workshop on confidence limits held at CERN [7].
This is particularly crucial when combining different
experiments together: the pull of each experiment will
depend on it and, as a result, so will the central values
of the deduced PDFs.

3.4. The central limit theorem
Assuming that the uncertainties are Gaussian dis-

tributed when they are not can lead to some serious
problems. For example, minimizing the χ2 constructed
assuming Gaussian distribution will not even maximize
the likelihood. Indeed in the general case, the usually
defined χ2 will not appear in the likelihood.

It is often assumed that the central limit theorem
can be used to justify the assumption of Gaussian dis-
tribution for the uncertainties. It is therefore useful to
revisit this theorem. Y is a linear combination of n
independent X � :

Y =
∑

�
c � X � (19)

σ2� =
∑

�
c2� σ

2�
i

where the c � are constants and the σ are the standard
deviations. The theorem states that in the limit of
large n the distribution of Y will be approximately
Gaussian if σ2� is much larger than any component
c2� σ2�

i
from a non-Gaussian distributed X � . For some

examples of how large n has to be, see Ref. [4].
Here is one way the theorem could be used: If the

F � relations are given by:

x
�
� (λ) = x

�

� +

�
unc∑

�
=1

u � ∆ � �

and if there is a large number of uncertainties, the
u � are independent and none of the ∆ � � for a non-
Gaussian-like u � dominate then we know that the sum
will be approximately Gaussian distributed. One way
to express this fact is simply to assume that all the
uncertainties are Gaussian distributed. In this case,
we recover the usual expression for the likelihood.

A direct consequence is that if there are a few un-
certainties that dominate a measurement, then we cer-
tainly need to know their distribution. See Ref. [8], for
an example of a non-Gaussian dominant uncertainty
in a real life experiment.

‖with an explicit statement that the uncertainties can be as-
sumed to be Gaussian distributed
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3.5. Luminosity Uncertainty
We now turn to the calculation of the likelihood

when there is a normalization uncertainty, like the
Luminosity uncertainty. The F relation of Eq. 14 is
given by:

Lλ = x
�

+ u1∆1, (20)

where we have assumed that we are measuring the
parameter directly, x

�
= λ. The Luminosity, L, has

also an uncertainty:

L = L0 + u2∆2. (21)

We assume that both u1 and u2 are Gaussian dis-
tributed. Replacing Eq. 21 in Eq. 20, we obtain:

L0λ− x
�

= u1∆1 − u2∆2x
�
. (22)

This expression shows that L0λ − x
�

is the sum of
two Gaussian, such that the likelihood is a Gaussian
distribution with the standard deviation given by:

σ2 = ∆2
1 + (∆2x

�
)2. (23)

The systematic uncertainty due to the Luminosity un-
certainty is proportional to the theory. Explicitly:

P (x
� |λ) =

1√
2π
√

∆2
1 + (∆2λ)2

e
− (L0λ−xe)2

2(∆2
1
+(∆2λ)2)

(24)

This result can also be derived from the general ex-
pression of the likelihood, after doing the appropriate
integral analytically.

A few remarks are in order. In this case, even though
all the uncertainties are Gaussian distributed, the min-
imization of the χ2 would not maximize the likelihood
because the theory appears in the normalization of the
likelihood. Another mistake that leads to problems in
this case is to replace λ by x

�

/L0 in the uncertainty.
This mistake leads to a downwards bias. If x

�

has a
downward statistical fluctuation, a smaller systematic
uncertainty is assigned to it, such that when it is com-
bined with other measurements, it is given a larger
weight than it should.

This example shows clearly that we have to know if
the uncertainties are proportional to the theory or to
the experimental value. Assuming one when the other
is correct can lead to problems. It is clear that many
other systematic uncertainties depend on the theory
and that should also be taken into account.

4. Sources of uncertainties

There are many sources of uncertainties beside the
experimental uncertainties. They either have to be

shown to be small enough to be neglected or they need
to be included in the PDF uncertainties. For exam-
ples: variation of the renormalization and factorization
scales; non-perturbative and nuclear binding effects;
the choice of functional form of the input PDF at the
initial scale; accuracy of the evolution; Monte-Carlo
uncertainties; and dependence on theory cut-off.

5. Current fit

Draconian measures were needed to restart from
scratch and re-evaluate each issue. We fixed the renor-
malization and factorization scales, avoided data af-
fected by nuclear binding and non-perturbative effects,
and use a MRS-style parametrization for the input
PDFs. The evolution of the PDFs is done by Mellin
transform method, see Ref. [9]. All the quarks are con-
sidered massless. We imposed a positivity constraint
on F2. A positivity constraint on other “observables”
could also be imposed.

At the moment we are using H1 and BCDMS (proton
data) measurement of F

�

2 for our core set. In order
to be able to use these data we have to assume that
all the uncertainties are Gaussian distributed ∗∗. We
then can calculate the χ2(λ) and P (λ) (≈ exp−χ2/2)
with all the correlations taken into account ††. We
generated 50000 unit-weighted PDFs according to the
probability function. For 532 data points, we obtained
a minimum χ2 of 530 for 24 parameters. We have
plotted in Fig. 1, the probability distribution of some
of the parameters. Note that the first parameter is α � .
The value is smaller than the current world average.
However, it is known that the experiments we are using
prefer a lower value of this parameter, see Ref. [10], and
as already pointed out, our current uncertainties are
lower limits. Note that the distribution of the param-
eter is not Gaussian, indicating that the asymptotic
region is not reached yet. In this case, the blind use
of the so-called chi-squared fitting method might be
misleading.

From this large set of PDFs, it is straightforward
to plot, for example, the correlation between different
parameters and to propagate the uncertainties to other
observables. In Fig. 2, the correlation between α � and
λ 
 is presented. λ 
 parametrizes the small Bjorken-
x behavior of the gluon distribution function at the
initial scale: xg(x) ∼ x−

�
g . The lines are constant

probability density levels that are characterized by a
percentage, α, which is defined such that 1− α is the
ratio of the probability density corresponding to the

∗∗no information being given about the distribution of the
uncertainties
††here we assumed that none of the systematic uncertainties
depend on the theory
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Figure 1. Plot of the distribution (black histograms) of four of the parameters. The first one is α � , the strong
coupling constant at the mass of the Z-boson. The line is a Gaussian distribution with same average and standard
deviation as the histogram

Figure 2. Correlation between two of the parameters:
α � and λ 
 , see the text for their definition. Constant
probability density levels are plotted.

level to the maximum probability density.
In Fig. 3, we show the correlation between two

observables, the production cross sections for the W
and Z vector bosons at the Tevatron along with the
experimental result from CDF. The constant probabil-
ity density levels are shown. The agreement between
the theory and the data is qualitatively good.

In Fig. 4, we present data-theory for the lepton
charge asymmetry in W decay at the Tevatron. The
data are the CDF result [11] and the theory correspond
to the average value over the PDF sets for each data
point, as defined in Eq. 1. The dashed line are the
theory plots corresponding to the one standard devi-
ation over the PDF sets, also defined in Eq. 1. The

Figure 3. Correlation between the production cross
sections for the W and Z vector bosons at the Teva-
tron, σ � and σ � (in nbarns, includes leptonic branch-
ing fraction). The solid and dashed lines show the
constraint due to the CDF measurement of the cross
section ratio.

inner error bars are the statistical and systematic un-
certainties added in quadrature‡‡. The outer error bar
correspond to the experiment and theory uncertainties
added in quadrature. The theory uncertainty is the un-
certainty associated with the Monte-Carlo integration,
the factorization and renormalization scale dependence
are small and can be neglected. 5000 PDFs were used

‡‡The distribution of the uncertainties and the point to point
correlation of the systematic uncertainties were not published
such that we had to assume Gaussian uncertainties and no
correlation
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Figure 4. Data-theory for the lepton charge asymmetry
in W decay at the Tevatron.

to generate this plot. It is well known that the data
we have included so far in our fit mainly constraint the
sum of the quark parton distribution weighted by the
square of the charges. The lepton charge asymmetry
is sensitive to the ratio of up-type to down-type quark
and is therefore not well constraint. We can add this
data set by simply weighting each PDF from our set
with the likelihood of the new data. The resulting new
range of the theory (calculated with weighted sums) is
given by the band of solid curves in Fig 4.

The effect of the inclusion of the lepton charge asym-
metry can be seen in Fig. 5, where the correlation
between the W and the Z cross section is shown again
but for the weighted PDFs. The agreement with the
data is better than before, but the probability density
has now two maxima.

It has been argued that for Run II at the Tevatron,
the measurement of the number of W and Z produced
could be used as a measurement of the Luminosity.
That of course requires the knowledge of the cross sec-
tion with a small enough uncertainties. In Fig. 6, the
luminosity probability distribution is presented for the
unit-weighted and weighted PDF sets along with the
the luminosity used by CDF. The plot for the weighted
set has also two maxima, has in Fig. 5.

5.1. Conclusions
In conclusion, we remind the reader again that

all the results should be taken as illustration of the
method and that not all the uncertainties have been
included in the fitting.

Figure 5. Same as in Fig. 3 for the weighted PDFs.
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Figure 6. Probability distribution of the luminosity
(run1a in pb−1) for the unit-weighted (right plot) and
weighted (middle plot) PDFs, compared to the value
used by CDF (left plot).

EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE

INCLUSIVE JET CROSS SECTION.

R. Hirosky
University of Illinois, Chicago, IL 60607

1. Introduction

This workshop has been an important channel of
communication between those performing global par-
ton distribution function (pdf) fits and the experimen-
tal groups who provide the data at the Tevatron. In
the particular case of jets analyses we have initiated
a detailed dialog on the sources and distributions of
experimental uncertainties. As part of my participa-
tion in the workshop, I have used the DØ inclusive
jet cross section as an example of a jet measurement
with a complex ensemble of uncertainties and have
provided descriptions of each component uncertainty.
Such dialogs will prove crucial in obtaining the best
constraints on allowable pdf models from the data.

2. Uncertainties on the CDF and DØ inclusive
jet cross sections

In the first meeting we summarized the jet inclu-
sive cross section measurements from the DØ [1] and
CDF [2] experiments. In particular, we illustrated
the major corrections applied to the data, namely jet

E � scale and E � resolution corrections, as well as the
derivation methods for these corrections employed by
each experiment. To review these methods see [3]-[4]
and references therein.

The uncertainties by component in the CDF and
DØ inclusive jet cross sections are shown in Figs.1-2.
Each component of the uncertainty reported for the
CDF cross section is taken to be completely corre-
lated across jet E � , while individual components are
independent of one another. The DØ uncertainties
(shown here symmetrized) are also independent of one
another, however each component may be either fully
or partially correlated across jet E � . In the case of the
energy scale uncertainty the band shown is constructed
from eight subcomponents.
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Figure 1. Uncertainties by component in the CDF
inclusive jet cross section,
1/(∆η∆E � )

∫ ∫
d2σ/(dE � dη)dE � dη, 0.1 < |η| < 0.7

2.1. Comparisons with theory
The two experiments have used various means to

compare their measurements to theoretical predictions.
CDF has published a comparison of their cross sec-
tion to a next-to-leading order (NLO) QCD calcula-
tion using a variety of pdf models by means of var-
ious normalization-insensitive, shape-dependent sta-
tistical measures [2] (Kolmogorov-Smirnov, Cramèr-
VonMises, Anderson-Darling). DØ has formulated a
covariance matrix using each uncertainty component
in the cross section and its E � correlation information
and employed a χ2 test to compare to NLO QCD [1].
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Figure 2. Uncertainties by component in the DØ
inclusive jet cross section,
1/(∆η∆E � )

∫ ∫
d2σ/(dE � dη)dE � dη, |η| < 0.5

It is difficult to generalize the various shape statist-
ics to include non-trivial correlations in the systematic
uncertainties and although correlations may be easily
added to a covariant error matrix χ2 tests can show
biases when faced with correlated scale errors. Ref-
erence [6] illustrates how correlated scale errors may
lead to biases in parameter estimation by noting that
systematic errors reported as a fraction of the observed
data can be evaluated as artificially small when applied
to a point that fluctuates low. This bias may be mit-
igated by parameterizing the systematic scale errors
as percentages of a smooth model of the data or by
placing them on the smooth theory directly (see con-
tributions to these proceedings by W. Giele, S. Keller,
and D. Kosower).

Other difficulties arise in interpretation of χ2 proba-
bilities when uncertainties show large correlations. The
probability that a prediction agrees with the data for
a given χ2 is calculated assuming that the χ2 follows
the distribution:

f(x;n) =
(x)( � �

2−1)exp(x/2)

2( � �
2)Γ(n/2)

(1)

where n is the number of degrees of freedom of the
data set. The probability of getting a worse value of
χ2 than the one obtained for the comparison is given
by:

P (χ2;n) =

∫ ∞
� 2

f(x;n)dx (2)

Hence, to verify the accuracy of the probabilities
quoted in the recent DØ cross section papers (inclusive
jet cross section [1] and dijet mass spectrum [7]), the χ2

distribution may be compared to Equation 1 with the
appropriate number of degrees of freedom. The χ2 dis-
tribution for the DØ dijet mass spectrum was tested by
developing a Monte Carlo program [8] that generates
many trial experiments based an ansatz cross section
determined from the best smooth fit to the data (with
a total of 15 bins, or 15 degrees of freedom). The first
step generated trials based on statistical fluctuations
taking the true number of events per bin as given by
the ansatz cross section. The trial spectra were then
generated for each bin according to Poisson statistics.
The χ2 for each of these trials was calculated using the
difference between the true and the generated values.
Figure 3 (solid curve) shows the χ2 distribution for all
of the generated trials. The distribution agrees well
with Equation 1 for 15 degrees of freedom. The next
step assumes that the uncertainties correlated as in
the measurement of the dijet mass cross section. Trial
spectra are generated using these uncertainties to gen-
erate a χ2 distribution (see the dotted curve in Fig. 3).
It is clear that χ2 distribution very similar to the curve
predicted by Equation 1. Hence, any probability gen-
erated using Equation 2 will be approximately correct.
The resulting χ2 distribution was fitted by Equation 1
and the resulting fit is consistent with the distribution
if 14.6 degrees of freedom are assumed.
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Figure 3. χ2 distribution for random fluctuations
around the nominal DØ Dijet Mass cross section.
(Solid) Errors are fluctuated as uncorrelated. (Dashed)
E � correlations are included.
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A similar test using the DØ inclusive jet cross section
finds the distributions shown in Fig. 4. The two distri-
butions agree well for χ2 values below approximately
15 and then begin to diverge slowly. The distribu-
tion based on the cross section uncertainties includes
a larger tail than the χ2 distribution generated with
the wholly uncorrelated uncertainties, implying that
probabilities based on a χ2 analysis will be slightly un-
derestimated. See also the talks by B. Flaugher in this
workshop for additional observations and comments on
χ2 analyses.
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Figure 4. χ2 distribution for random fluctuations
around the nominal DØ inclusive jet cross section.
(Solid) errors are fluctuated as uncorrelated. (Dashed)
E � correlations are included.

3. Beyond the Normal assumption

Independent of any difficulties due to correlated un-
certainties, a χ2 test necessarily relies on the assump-
tion that the uncertainties follow a normal distribution.
This may be a reasonable approximation in some cases.
Upon close inspection we expect this assumption to
be generally false for most rapidly varying observables
(i.e. steeply falling cross section measurements). Per-
haps, as in the most obvious case, some experimental
uncertainties will simply be non-Gaussian in their dis-
tribution and furthermore symmetric uncertainties in
the abscissa variable will develop into asymmetric un-
certainties when propagated through to the measured
distribution. The latter case is illustrated as follows.

Consider an E � -independent jet E � scale error of 2%.
What is it’s effect on an inclusive jet cross section
versus E � ? Jets are shifted bin-to-bin by fluctuating
their E � values within the 2% range and as a result of
the steeply falling cross section, more jets from low E �

values are shifted into higher E � bins by one extreme
of this scale uncertainty than the in reverse shift for
higher E � jets. Figure. 5 shows how a flat 2% E � scale
uncertainty alters the measured cross section using a
smooth fit to the DØ data as the nominal cross section
model. In general the degree of this asymmetry will
depend on the steepness of the measured distribution.
In order to define a covariance matrix, such errors are
typically symmetrized.
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Figure 5. Example of a 2% E � scale error propagated
through an inclusive jet cross section measurement.

The use of an approximate covariance matrix will
also result in a loss of sensitivity when errors are shown
to follow distributions with tails smaller than in a nor-
mal distribution. As an example we show a correction
factor with uncertainties of this type from the DØ jet
cross section analysis in Fig. 6. This figure shows the
hadronic response correction for jets as a function of
jet energy. The correction is derived from an analysis
of γ + jet data [4]. The bands delimit regions that
contain ensembles of deviations from the nominal re-
sponse within certain confidence limits. It is evident
that in this case assuming the uncertainty follows a
normal distribution with variance equal to the 68%
limits shown will tend of underestimate the sensitivity
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of the data for excluding certain classes of theories.
Figure 7 shows the range of cross section uncertainty
due to the response component only as a function of
confidence level for several E � values of the DØ cross
section.
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Figure 6. DØ Jet response correction versus Energy.
The outer bands show the extreme deviation in re-
sponse at a given confidence level as a function of jet
energy.

4. Application to pdf constraints

In this workshop W. Giele, S. Keller, and D. Kosower
have reported on a method for extracting pdf distribu-
tions with quantitative estimates of pdf uncertainties.
In effect their method [5] uses a Bayesian approach that
integrates sets of pdf parameterizations over properly
weighted samples of experimental uncertainties to pro-
duce a set of pdf models consistent with the data within
a given confidence level. The basic method may be
extended to use data with arbitrary error distributions
and correlations. For such methods to function reliably
the experiments must be able to provide detailed de-
scriptions of their error distributions. Giele et al. make
a distinction between ‘errors on the data’ and ‘errors on
the theory’ for estimation of the most likely pdf models.
In this context we take only uncertainties depending
directly on the number of events in a bin as ‘errors on
the data’. Other typical sources of uncertainty, lumi-
nosity, energy scale, resolution, etc., may be treated as
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Figure 7. DØ response uncertainty propagated
through the inclusive jet cross section measurement at
various E � values. The solid bands represent extreme
variations at various confidence levels. The dashed
bands illustrate the overestimation of these variations
by using a Gaussian approximation.

‘errors on the theory’ in that they are in some sense
independent of the statistical precision of the data and
represent how an underlying, true, distribution may be
distorted by observation in the experiment.

As a result of these dialogs, we have revisited the DØ
response uncertainty (our largest uncertainty in the in-
clusive jet cross section measurement) from Fig. 6 and
generated a sampling of the probability density func-
tion for distributions in it parameters. This probability
density function contains all the relevant information
on both the shape of the uncertainty distribution and
point-to-point correlations. It is clear that providing
such information is a significant enhancement from tra-
ditional methods of summarizing experimental uncer-
tainties. Optimum utilization of the data demands a
detailed understanding and reporting of its associated
uncertainties. Through our fruitful discussions in this
workshop, we look forward to setting an example for
the reporting of experimental uncertainties and to fully
exploiting our cross section data in pdf analyses in the
near future.
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Abstract

Parton densities are important input parameters for
SUSY particle cross section predictions at the Teva-
tron. Accurate theoretical estimates are needed to
translate experimental limits, or measured cross sec-
tions, into SUSY particle mass bounds or mass de-
terminations. We study the PDF dependence of
next-to-leading order cross section predictions, with
emphasis on a new set of parton densities [1]. We com-
pare the resulting error to the remaining theoretical
uncertainty due to renormalization and factorization
scale variation in next-to-leading order SUSY-QCD.

1. Introduction

The search for supersymmetric particles is among
the most important endeavors of present and future
high energy physics. At the upgraded pp̄ collider Teva-
tron, the searches for squarks and gluinos (and espe-
cially the lighter stops and sbottoms), as well as for
the weakly interacting charginos and neutralinos, will
cover a wide range of the MSSM parameter space [2,3].

The hadronic cross sections for the production of
SUSY particles generally suffer from unknown theo-
retical errors at the Born level [4]. For strongly in-
teracting particles the dependence on the renormaliza-
tion and factorization scale has been used as a mea-
sure for this uncertainty, leading to numerical ambigu-
ities of the order of 100%. For Drell-Yan type weak
production processes the dependence on the factoriza-
tion scale is mild. However, a comparison of leading
and next-to-leading order predictions [5] reveals that
the impact of higher-order corrections is much larger
than the estimate through scale variation would have
suggested. The use of next-to-leading order calcula-
tions [5–7] is thus mandatory to reduce theoretical un-
certainties to a level at which one can reliably extract
mass limits from the experimental data.
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part by the University of Wisconsin Research Committee with
funds granted by the Wisconsin Alumni Research Foundation
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In addition to the scale ambiguity and the impact of
perturbative corrections beyond next-to-leading order,
hadron collider cross section are subject to uncertain-
ties coming from the parton densities and the asso-
ciated value of the strong coupling. Previously, the
only way to estimate the PDF errors was to compare
the best-fit results from various global PDF analyses.
Clearly, this is not a reliable measure of the true un-
certainty. As a first step towards a more accurate error
estimate, the widely used sets CTEQ [8] and MRST [9]
now offer different variants of PDF sets, e.g. using
different values of the strong coupling constant. In this
letter we compare their predictions to the preliminary
GKK parton densities [1], which provide a systematic
way of propagating the uncertainties in the PDF de-
termination to new observables.

2. Stop Pair Production

For third generation squarks the off-diagonal left-
right mass matrix elements do not vanish, but lead to
mixing stop (and sbottom) states. The lighter mass
eigenstate, denoted as t̃1, is expected to be the lightest
strongly interacting supersymmetric particle. More-
over, its pair production cross section, to a very good
approximation, only depends on the stop mass, in con-
trast to the light flavor squark production. Neverthe-
less, considering the different decay channels compli-
cates the analyses [3,10]. At the Tevatron the fraction
of stops produced in quark-antiquark annihilation and
in gluon fusion varies strongly with the stop mass.
Close to threshold the valence quark luminosity is dom-
inant, but for lower masses a third of the hadronic cross
section can be due to incoming gluons [7].

In Figure 1 we compare the total t̃1-pair production
cross sections for three sets of parton densities: only for
incoming quarks do the CTEQ4 and MRST99 results
lie on top of each other. For gluon fusion the corre-
sponding cross sections differ by ∼ 10%. The GKK set
centers around a significantly smaller value. This is in
part due to the low average value 〈α � (GKK)〉 = 0.108,
which is expected to increase after including more
experimental information in the GKK analysis. But
even the normalized cross section σ/α2

� is still smaller
by 35% compared to CTEQ4 and MRST99 because
of the entangled fit of the strong coupling constant
and the parton densities. However, the width of the
Gaussian fit to the GKK results gives an uncertainty
of 2% and 8% for the quark-antiquark and gluon fusion
channel, similar to the difference between CTEQ4 and
MRST99.

For heavier stop particles, Figure 2, the gluon lu-
minosity is strongly suppressed due to the large final
state mass, and mainly valence quarks induced pro-

cesses contribute to the cross section. The Gaussian
distribution of the GKK results has a width of ∼ 2%.
The comparably large difference between CTEQ4 and
MRST99 is caused by the small fraction of gluon in-
duced processes, since the gluon flux at large values of
x differs for CTEQ4 and MRST99 by approximately
40%.

3. Chargino/Neutralino Production

The production of charginos and neutralinos at the
Tevatron is particularly interesting in the trilepton
χ̃0

2χ̃
±
1 and the light chargino χ̃+

1 χ̃
−
1 channels [11].

The next-to-leading order corrections to the cross sec-
tions [5] reduce the factorization scale dependence, but
at the same time introduce a small renormalization
scale dependence. A reliable estimate of the theoret-
ical error from the scale ambiguity will thus only be
possible beyond next-to-leading order.

The Gaussian distribution of the GKK parton
densities for light chargino pairs is shown in Fig-
ure 3. For the chosen mSUGRA parameters (m0 =
100 GeV, A0 = 300 GeV,m1

�
2 = 150 GeV) the width is

∼ 2%, as one would expect from the quark-antiquark
channel of the stop production. But in contrast to
the stop production, where all quark luminosities add
up, the chargino/neutralino channels can be extremely
sensitive to systematic errors in different parton den-
sities due to destructive interference between s and t
channel diagrams. The total trilepton cross section for
example will therefore be a particular challenge for a
reliable error estimate.

4. Outlook

We have briefly reviewed the status of the theo-
retical error analysis of SUSY cross sections at the
Tevatron. For strongly interacting final state parti-
cles, the inclusion of next-to-leading order corrections
reduces the renormalization and factorization scale am-
biguity to a level ∼< 10% where the size of the PDF
errors becomes phenomenologically relevant. We have
compared different recent PDF sets provided by the
CTEQ [8] and MRST [9] collaborations to the prelimi-
nary GKK parton densities [1]. The large spread in the
cross section predictions can mainly be attributed to
the low average value of the strong coupling associated
with the GKK sets. We expect this spread to be re-
duced once more data have been included in the GKK
analysis and the corresponding average value of the
strong coupling becomes closer to the world average.
For weak supersymmetric Drell-Yan type processes [5]
the scale dependence at NLO cannot serve as a mea-
sure for the theoretical error since the renormalization
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scale dependence is only introduced at NLO. The PDF
induced errors for e.g. the case of χ̃+

1 χ̃
−
1 production are

small; however, interference effects between the differ-
ent partonic contributions must be taken into account.

The recently available variants of PDF sets provided
by CTEQ and MRST and, in particular, the GKK
parton densities allow for the first time a systematic
exploration of PDF uncertainties for the prediction of
SUSY particle cross sections. The preliminary GKK
results do not yet allow a conclusive answer, but they
point the way towards a complete and reliable error
analysis in the near future.
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Höpker, M. Spira, P.M. Zerwas, and M. Klasen for
the collaboration during different stages of this work.
Furthermore we are grateful to S. Keller who triggered
this analysis by making his preliminary set of parton
densities available to us.

REFERENCES

1. W. Giele, S. Keller, D. Kosower, contributions to
this volume.

2. M. Carena, R.L. Culbertson, S. Reno, H.J.
Frisch, and S. Mrenna, ANL-HEP-PR-97-98, hep-
ph/9712022 and references therein.

3. R. Demina, J.D. Lykken, K.T. Matchev, and A.
Nomerotski, hep-ph/9910275.

4. G.L. Kane and J.P. Leveillé, Phys. Lett. B112
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Figure 1. NLO production cross section for a light
stop. The Gaussian fits the preliminary GKK parton
densities. The renormalization/factorization scale is
varied around the average final state mass.
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Figure 2. NLO production cross section for a heav-
ier stop, dominated by incoming valence quarks. The
Gaussian fits the preliminary GKK parton densi-
ties. The renormalization/factorization scale is varied
around the average final state mass.
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Abstract

Parton distribution functions are determined by the
comparison of finite-order calculations with data. We
briefly discuss the interplay of higher order corrections
and PDF determinations, and the use of soft-gluon
resummation in global fits.

1. Factorization & the nlo model

A generic inclusive cross section for the process A+
B → F + X with observed final-state system F , of
total mass Q, can be expressed as

Q4 dσ � � → � �

dQ2
= φ � � � (x � , µ2) ⊗ φ � � � (x � , µ2)

⊗ σ̂ � � → � � (z,Q, µ) , (1)

with z = Q2/x � x � S. The σ̂ � � are partonic hard-
scattering functions, σ̂ = σBorn +(α � (µ2)/π)σ̂(1) + . . . .
They are known to NLO for most processes in the stan-
dard model and its popular extensions. Corrections
begin with higher, uncalculated orders in the hard
scattering, which respect the form of Eq. (1). The dis-
cussion is simplified in terms of moments with respect
to τ = Q2/S,

σ̃ � � → � � =

∫ 1

0

dτ τ
� −1 Q4 dσ � � → � � /dQ2

=
∑
� �
�
φ̃ � � � (N,µ2) σ̃ � � → � � (N,Q, µ) φ̃ � � � (N,µ2) , (2)

†This work was supported in part by the National Science Foun-
dation, grant PHY9722101.

where the moments of the φ’s and σ̂ � � → � � are defined
similarly.

Eqs. (1) and (2) are starting-points for both the de-
termination and the application of parton distribution
functions (PDFs), φ � � � , using 1-loop σ̂’s [1–3] We may
think of this collective enterprise as an “NLO model”
for the PDFs, and for hadronic hard scattering in gen-
eral. For precision applications we ask how well we
really know the PDFs [4–6]. Partly this is a ques-
tion of how well data constrain them, and partly it
is a question of how well we could know them, given
finite-order calculations in Eqs. (1) and (2). We will
not attempt here to assign error estimates to theory.
We hope, however, to give a sense of how to distin-
guish ambiguity from uncertainty, and how our partial
knowledge of higher orders can reduce the latter.

2. Uncertainties, schemes & scales

It is not obvious how to quantify a “theoretical un-
certainty”, since the idea seems to require us to esti-
mate corrections that we haven’t yet calculated. We do
not think an unequivocal definition is possible, but we
can try at least to clarify the concept, by considering
a hypothetical set of nucleon PDFs determined from
DIS data alone [4]. To make such a determination,
we would invoke isospin symmetry to reduce the set of
PDF’s to those of the proton, φ � � � , and then measure a
set of singlet and nonsinglet structure functions, which
we denote F ( � ). Each factorized structure function may
be written in moment space as

F̃ ( � )(N,Q) =
∑
�
C̃( � )� (N,Q, µ) φ̃ � � � (N,µ2) , (3)

in terms of which we may solve for the parton distri-
butions by inverting the matrix C̃,

φ̃ � � � (N,µ2) =
∑

�
C̃−1( � )� (N,Q, µ) F̃ ( � )(N,Q) . (4)

With “perfect” F̃ ’s at fixed Q, and with a specific
approximation for the coefficient functions, we could
solve for the moment-space distributions numerically,
without the need of a parameterization. In a world
of perfect data, but of incompletely known coefficient
functions, uncertainties in the parton distributions
would be entirely due to the “theoretical” uncertainties
of the C’s:

δφ̃ � � � (N,µ) =
∑

�
δC̃−1( � )� (N,Q, µ) F̃ ( � )(N,Q) . (5)

Our question now becomes, how well do we know the
C’s? In fact this is a subtle question, because the
coefficient functions depend on choices of scheme and
scale.
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Factorization schemes are procedures for defining co-
efficient functions perturbatively. For example, choos-
ing for F2 the LO (quark) coefficient function in Eq. (4)
defines a DIS scheme (with C̃ independent of µ, which
is then to be taken as Q in φ̃). Computing the C’s
from partonic cross sections by minimal subtraction to
NLO defines an NLO MS scheme, and so on. Once the
choices of C’s and µ are made, the PDF’s are defined
uniquely.

Evolution in an MS or related scheme, enters
through

µ
d

dµ
φ̃ � � � (N,µ2) = −Γ � � (N,α � (µ2)) φ̃ � � � (N,µ2)

µ
d

dµ
C̃( � )� (N,Q, µ) = C̃

( � )
� (N,Q, µ) Γ � � (N,α � (µ2)) . (6)

In principle, by Eq. (6), the scale-dependence of the

C
( � )� exactly cancels that of the PDFs in Eq. (3) and,

by extension, in Eq. (1). This cancelation, however,
requires that each C and the anomalous dimensions Γ
be known to all orders in perturbation theory.

To eliminate µ-dependence up to order α
� +1
� , we

need σ̂ to order α
�
� and the Γ � � to α

� +1
� . One-loop

(NLO) QCD corrections to hard scattering require
two-loop splitting functions, which are known. The
complete form of the NNLO splitting functions, is still
somewhere over the horizon [7]. Even when these are
known, it will take some time before more than a
few hadronic hard scattering functions are known at
NNLO.

We can clarify the role of higher orders by relating
structure functions at two scales,Q0 and Q. Once we
have measured F (N,Q0), we may predict F (N,Q) in
terms of the relevant anomalous dimensions and coef-
ficient functions by

F (N,Q) = F (N,Q0) e

∫
Q

Q0

dµ′
µ′ Γ(

�
� �
s(

� ′2))

×
[
C̃(N,Q,Q)

C̃(N,Q0, Q0)

]
. (7)

This prediction, formally independent of PDFs and
independent of the factorization scale, has corrections
from the next, still uncalculated order in the anoma-
lous dimension and in the ratio of coefficient functions.
The asymptotic freedom of QCD gives a special role
to LO: only the one-loop contribution to Γ diverges
with Q in the exponent, and contributes to the lead-
ing, logarithmic scale breaking. NLO corrections al-
ready decrease as the inverse of the logarithm of Q,
NNLO as two powers of the log. Thus, the theory is
self-regulating towards high energy, where dependence
on uncalculated pieces in the coefficients and anoma-
lous dimensions becomes less and less important.

The general successes of the NLO model strongly
suggest that relations like (7) are well-satisfied for a
wide range of observables and values of N (or x) in
DIS and other processes. This does not mean, however,
that we have no knowledge of, or use for, information
from higher orders. In particular, near x = 1 PDFs are
rather poorly known [8]. At the same time, the ratio of
C’s depends on N , and if α � lnN is large, it becomes
important to control higher-order dependence on lnN .
This is a task usually referred to as resummation, to
which we now turn.

3. Resummation

Let us continue our discussion of DIS, describing
what is known about the N -dependence of the coeffi-
cient functions C, as a step toward understanding the
role of higher orders. Specializing again for simplic-
ity to nonsinglet or valence, the resummed coefficient
function may be written as [9,10]

C̃res(N,Q, µ) = C̃NLO
� � � (N,Q, µ) + CDIS� e

�
DIS(

�
� � � � ), (8)

where “sub” implies a subtraction on C̃NLO to keep
C̃res exact at order α � , and where CDIS� corresponds to
the NLO N -independent (“hard virtual”) terms. The
exponent resums logarithms of N :

EDIS(N,Q, µ) = (9)
∫ � 2

� 2
� ¯�

dµ′2

µ′2

[
A(α � (µ′2)) ln(N̄µ′2/Q2) +B(α � (µ′2))

]
,

with N̄ ≡ Ne
�
E , and with

A(α � ) =

α �

π
C �

[
1 +

α �

2π

(
C �

(
67

18
− π2

6

)
− 10

9
T �

)]

B(α � ) =
3

2
C �

α �

2π
. (10)

Eq. (10) is accurate to leading (LL) and next-to-leading
logarithms (NLL) in N in the exponent: α

�
� ln

� +1N
and α

�
� ln

�
N , respectively. The N dependence of the

ratio C̃res
2 (N,Q,Q)/C̃NLO

2 (N,Q,Q) is shown in Fig. 1,
with Q2 = 1, 5, 10, 100 GeV2. At N = 1 the ratio is
unity. It is less than unity for moderate N , but then
begins to rise, with a slope that increases strongly for
small Q. At low Q2 and large N , higher orders can
be quite important. What does this mean for PDFs?
We can certainly refit PDFs with resummed coefficient
functions, and we see that the high moments of such
PDFs are likely to be quite different from those from
NLO fits.

To get a sense of how such an NLL/NLO-MS scheme
might differ from a classic NLO-MS scheme, we resort
to a model set of resummed distributions, determined
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Figure 1. Ratio of Mellin-N moments of resummed
and NLO MS-scheme quark coefficient functions for
F2. The numbers denote the value of Q2 in GeV2. We
have chosen µ = Q.

as follows. We define valence PDFs in the resummed
scheme by demanding that their contributions to F2

match those of the corresponding NLO valence PDFs
at a fixed Q = Q0, which is ensured by

φ̃res(N,Q2
0) = φ̃NLO(N,Q2

0)
C̃NLO

2 (N,Q0, Q0)

C̃res
2 (N,Q0, Q0)

. (11)

Using the resummed parton densities from Eq. (11),
we can generate the ratios F res

2 (x,Q)/FNLO
2 (x,Q).

The result of this test, picking Q2
0 = 100 GeV2 is

shown in Fig. 2, for the valence F2(x,Q) of the proton,
with x = 0.55, 0.65, 0.75 and 0.85. The NLO distribu-
tions were those of [2], and the inversion of moments
was performed as in [11]. The effect of resummation is
moderate for mostQ. At small values ofQ, and large x,
the resummed structure function shows a rather sharp
upturn. One also finds a gentle decrease toward very
large Q [12]. We could interpret this difference as the
uncertainty in the purely NLO valence PDFs implied
by resummation.

From this simplified example, we can already see
that the use of resummed coefficient functions is not
likely to make drastic differences in global fits to PDFs
based on DIS data, at least so long as the region of
small Q2, of 10 GeV2 or below, is avoided at very large
x. At the same time, it is clear that a resummed fit
will make some difference at larger x, where PDFs are
not so well known. We stress that a full global fit will
be necessary for complete confidence.

Figure 2. Ratio of the valence parts of the resummed
and NLO proton structure function F2(x,Q2), as a
function of Q2 for various values of Bjorken-x. For
F res

2 , the ‘resummed’ parton densities have been de-
termined through Eq. (11).

4. Resummed hadronic scattering

Processes other than DIS play an important role in
global fits, and in any case are of paramount phe-
nomenological interest. Potential sources of large
corrections can be identified quite readily in Eq. (2).
At higher orders, factors such as α � ln2N , can be as
large as unity over the physically relevant range of z
in some processes. In this case, they, and their scale
dependence can be competitive with NLO contribu-
tions. Since they make up well-defined parts of the
correction at each higher order, however, it is possible
to resum them. To better determine PDFs in regions of
phase space where such corrections are important, we
may incorporate resummation in the hard-scattering
functions that determine PDFs.

The Drell-Yan cross section is the benchmark for the
resummation of logs of 1−z, or equivalently, logarithms
of the moment variable N [9],

σ̂DY� ¯� (N,Q, µ) = σBorn(Q) CDY� e
�

DY(
�

� � � � )

+O(1/N) . (12)
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The exponent is given in the MS scheme by

EDY(N,Q, µ) = 2

∫ � 2

� 2
� ¯�

2

dµ′2

µ′2
A(α � (µ′2)) ln N̄

+2

∫ � 2

� 2
� ¯�

2

dµ′2

µ′2
A(α � (µ′2)) ln

(
µ′

Q

)
, (13)

with A as in Eq. (10), and where we have exhibited
the dependence on the factorization scale, setting the
renormalization scale to Q. Just as in Eq. (10) for
DIS, Eq. (13) resums all leading and next-to-leading
logarithms of N .

It has been noted in several phenomenological appli-
cations that threshold resummation, and even fixed-
order expansions based upon it, significantly reduce
sensitivity to the factorization scale [13]. To see why,
we rewrite the moments of the Drell-Yan cross section
in resummed form as

σDY
� � (N,Q)

=
∑

�
φ � � � (N,µ) σ̂DY� ¯� (N,Q, µ) φ¯�

� � (N,µ)

=
∑

�
φ � � � (N,µ) e

�
DY(

�
� � � � )

�
2σBorn(Q) CDY�

× φ¯�
� � (N,µ) e

�
DY(

�
� � � � )

�
2 +O(1/N) . (14)

The exponentials compensate for the lnN part of
the evolution of the parton distributions, and the
µ-dependence of the resummed expression is sup-
pressed by a power of the moment variable,

µ
d

dµ

[
φ � � � (N,µ) e

�
DY(

�
� � � � )

�
2
]

= O(1/N) .
(15)

This surprising relation holds because the function
A(α � ) in Eq. (10) equals the residue of the 1/(1 − x)
term in the splitting function P � � . Thus, the remaining
N -dependence in a resummed cross section still begins
at order α2

� , but the part associated with the 1/(1−x)
term in the splitting functions has been canceled to all
orders. Of course, the importance of the remaining
sensitivity to µ depends on the kinematics and the
process. In addition, although resummed cross sections
can be made independent of µ for all lnN , they are
still uncertain at next-to-next-to leading logarithm in
N , simply because we do not know the function A at
three loops. Notice that none of these results depends
on using PDFs from a resummed scheme, because MS
PDFs, whether resummed or NLO, evolve the same
way. The remaining, uncanceled dependence on the
scales leaves room for an educated use of scale-setting
arguments [14]. The connection between resummation
and the elimination of scale dependence has also been
emphasized in [15].

Scale dependence aside, can we in good conscience
combine resummed hard scattering functions in Eq.
(1) with PDFs from an NLO scheme? This wouldn’t
make much sense if resummation significantly changed
the coefficient functions with which the PDFs were
originally fit. As Fig. 2 shows, however, this is unlikely
to be the case for DIS at moderate x. Thus, it makes
sense to apply threshold resummation with NLO PDFs
to processes and regions of phase space where there
is reason to believe that logs are more important at
higher orders than for the input data to the NLO fits.

At the same time, a set of fits that includes thresh-
old resummation in their hard-scattering functions can
be made [10], and their comparison to strict NLO fits
would be quite interesting. Indeed, such a comparison
would be a new measure of the influence of higher
orders. A particularly interesting example might be
to compare resummed and NLO fits using high-p � jet
data [3].

5. Power-suppressed corrections

In addition to higher orders in α � (µ2), Eq. (1) has
corrections that fall off as powers of the hard-scattering
scale Q. In contrast to higher orders, these corrections
require a generalization of the form of the factorized
cross section. Often power corrections are parameter-
ized as h(x)/[(1 − x)Q2] in inclusive DIS, where they
begin at twist four. In DIS, this higher twist term
influences PDFs when included in joint fits with the
NLO and NNLO models, and vice-versa [16–18]. As
in the case with higher orders, such “power-improved”
fits should be treated as new schemes.

6. Conclusions

The success of NLO fits to DIS and the studies of
resummation above suggest that over most of the range
of x, theoretical uncertainties of the NLO model are
not severe. At the same time, to fit large x with more
confidence than is now possible may require including
the resummed coefficient functions.

Resummation is especially desirable for global fits
that employ a variety of processes, such as DIS and
high-p � jet production, which differ in available phase
space near partonic threshold. In a strictly NLO ap-
proach, uncalculated large corrections are automati-
cally incorporated in the PDFs themselves. As a result,
the NLO model cannot be expected to fit simultane-
ously the large-x regions of processes with differing logs
of 1−x in their hard-scattering functions, unless these
higher-order corrections are taken into account.

The results illustrated in the figures suggest that
these considerations may be important in DIS with
Q2 below a few GeV2 and at large x, where they may
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have substantial effects on estimates of higher twist in
DIS. In hadronic scattering, large-N (x → 1) resum-
mation, which automatically reduces scale dependence,
may play an even more important role than in DIS.
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1. Introduction

The last few years have seen both new and improved
measurements of deep inelastic and related hard scat-
tering processes and invigorated efforts to test the lim-
its of our knowledge of parton distributions (PDF)
and assess their uncertainty. Recent global analysis
fits to the wealth of structure functions and related
data provide PDFs of substantial sophistication com-
pared to the previous parameterizations [1][2]. The
new PDF sets account for correlated uncertainty in
strong coupling constant, variation from normalization
uncertainty of data sets, theoretical assumptions re-
garding higher twists effects, initial parameterization
form and starting Q � value, etc. Range of potential
variation in gluon density, strange and charm quark
densities or, recently, also in d quark distribution [3]
are also provided. Participants of this Workshop in
the PDF group primarily concentrated on finding new
ways of inclusion of systematic uncertainties associated
with experimental data into the framework of global
analyses. Development in likelihood calculation by
Giele, Keller, and Kosower, studies by CDF and D0
collaborators, and a parallel work of CTEQ collabora-
tion are presented in these proceedings.

New or improved results from several experiments
have contributed to better knowledge of PDFs, how-
ever, there are still areas where the interpretation of ex-
perimental data is not clear. Few of these contentious
issues will be discussed in this note.

2. Issues in the Interpretation of Experimental
Data

2.1. Gluon distribution at moderate to high x
In principle, many processes are sensitive to the

gluon distribution, but its measurement is difficult
beyond x > 0.2 where it becomes very small. Fer-
milab second generation– direct photon experiment
E706, although quite challenging experimentally, was
designed to constrain gluon distribution at high x.
For proton-nucleon interactions in LO, direct photons
are produced through Compton scattering off gluon
(gq → γq) 90% of the time in the E706 kinematic
range.

The first direct photon measurements, as well as
WA70 [4] were in agreement with the NLO theory

and were used in several generations of global analysis
fits. However, series of revisits of theoretical issues
in 1990-ties (see, e.g., discussion in [5]) pointed to a
large dependence of the NLO calculation on renor-
malization and factorization scales and necessity to
include yet-unknown photon fragmentation function
in the calculations. Since the available

√
(s) energy

is low (20-40 GeV) for the fixed target experiments
missing perturbation orders in the calculation are im-
portant. Moreover, as shown by the E706 analysis,
the transverse momentum of initial state partons (k � )
dramatically affects the differential cross sections mea-
sured versus transverse momentum of the outgoing
photon (p � ). E706 measured the so-called k � smearing
by observing kinematic imbalance in production of π

�

pairs, π
�

γ, and double-direct photons and found k �

values ≈ 1 GeV and increasing with
√

(s) [6]. Simi-
lar results are obtained in dijets and Drell-Yan data.
K � is believed to arise from both soft gluon emissions
and non-perturbative phenomena. NLO calculations
smeared with k � estimated from these measurements
are increased by a factor of 2 to 4 (see Figure 1) and
agree with the E706 direct photon and π0 data on
proton and Be targets, at

√
(s) of 31 and 38 GeV. A

strong indication of k � effects and the need for soft
gluon resummation comes also from the analysis of
double direct photon production. Both the NLO re-
summed theory and k � smeared NLO theory describe
the double direct photon kinematics and cross section
very well, in stark contrast to the “plain” NLO predic-
tion [7].

A comparison of current gluon distribution param-
eterizations indicates our lack of knowledge of gluon
in the moderate to high x range, (see Figure 2). The
hardest gluon is the CTEQ4HJ distribution. Here the
gluon distribution is forced to follow the high E � in-
clusive differential jet cross section measured at CDF.
Latest PDF sets by CTEQ match the WA70 direct
photon data at

√
(s)=23 GeV with no k � , and require

k � =1.1 (1.3) GeV/c for the E706 data at
√

(s)=31
(38) GeV. Due to the difficulty in reconciling this ap-
proach no direct photon data is used in the CTEQ5
global analysis. The MRST group chose a different
treatment: gluon distributions are reduced at high x
to accommodate some k � smearing for both WA70 and
E706 resulting in a moderately good description of the
data and three PDF sets spanning the extremes (shown
in Figure 2). The variety of predictions agree at low x,
but differ widely at high x. The uncertainty in the k �

modeling, its unknown shape versus p � , and potential
discrepancy between WA70 and E706 measurements
(see discussions in [6] and [8]) require theoretical work
to help resolve this outstanding controversy. Luckily,
the interest in direct photon physics and its importance
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Figure 1. Data and Theory agree after k � smearing for
π0 and γ production in pBe interactions at 800 GeV.
Data-Theory/Theory comparison for various values of
k � is shown in lower insert.

for gluon determination has caught on, and 98 and 99
have seen a flurry of publications, notably: “Soft-gluon
resummation and NNLO corrections for direct pho-
ton production” by N. Kidonakis, J. Owens (hep-
ph/9912388), “Results in next-to-leading-log prompt-
photon hadroproduction” by S. Catani, M. Mangano,
C. Oleari (hep-ph/9912206), “Unintegrated parton dis-
tributions and prompt photon hadroproduction” by
M. Kimber, A. Martin, M. Ryskin (DTP/99/100),
“Origin of k � smearing in direct photon production”
by H. Lai, H. Li (hep-ph/9802414), “Sudakov resum-
mation for prompt photon production in hadron col-
lisions” by S. Catani, M. Mangano, P. Nason (hep-
ph/9806484), etc. New resummation results are also
expected from a group of G. Sterman and W. Vogel-
sang.

In addition to direct photons, the Tevatron jet and
dijet measurements are also sensitive to the gluon dis-
tribution (in the moderate x region). These measure-
ments and comparisons to theory have their own set of

10
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x

xG
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,Q
)

MRST MRST g↑ MRST g↓

CTEQ4HJCTEQ4M

NLO fit to DIS+DY+E706 proton beam data
√s=31.6 and 38.8 GeV data combined
〈kT〉 = 1.2 and 1.3 GeV/c, respectively

Q = 5.0 GeV/c

Figure 2. Recent PDF sets indicate substantial dis-
agreement about the shape and size of gluon distri-
bution at moderate to high x. CTEQ5 results closely
follow CTEQ4M curve shown here.

concerns, e.g. jet definition, which is never exactly the
same in the data and in the NLO calculation or higher
order correlations in the underlying event (see discus-
sion in, e.g., [9]). The jet cross sections, strongly dom-
inated by qq̄ scattering, are also sensitive to changes
in high x valence distributions. An unresolved issue in
the jet cross section analysis is also a lack of full scaling
between 630 and 1800 GeV data, predicted by QCD,
and a discrepancy between the D0 and CDF measure-
ments of this scaling ratio at lowest x � = E � /

√
(s).

2.2. Valence distributions at high x
Apart from modifications to gluon and charm quark

distributions, the valence d quark has received the
biggest boost in high x region compared to previous
PDF sets. The change is on the order of 30% at x=0.6
and Q2 = 20GeV2 and comes from inclusion of a new
observable in the global analysis fits, namely W-lepton
asymmetry measured at CDF. Precise measurement of
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W-lepton asymmetry serves as an independent check
on the u and d quark distributions obtained from fits to
deep inelastic data. The observable is directly corre-
lated with the slope of the d/u ratio in the x range
of 0.1-0.3. The consequence of this new constraint
is that the predicted F

�
2 /F

�

2 ratio is increased and
the description of the NMC measurement of F

�

2 /F
�

2

is improved relative to earlier PDF sets. There re-
main, however, two areas of uncertainty regarding va-
lence distributions at high x: the value of d/u ratio
at x=1 and a question regarding a need for nuclear
corrections to F

�

2 /F
�

2 NMC measurement. Deuterium
is a loosely bound nucleus, of low A, and traditionally
no corrections for nuclear effects have been applied.
However, an analysis of SLAC F2 data on different
targets under the assumption that nuclear effects scale
with the nuclear binding for all nuclei predicts nuclear
correction for deuterium of 4±1% at x=0.7 [10]. There
is also a lack of clarity regarding d/u value at 1. A
non-perturbative QCD-motivated models of the 1970’s
argue that the d/u ratio should approach 0.2 at highest
x, whereas any standard form of the parameterization
used in global fits drive this ratio to zero. The CTEQ
collaboration has performed studies of change in d/u
ratio, depending on assumptions regarding nuclear ef-
fects in deuterium and the value of d/u ratio at x=1 [3].
CTEQ5UD PDF set includes nuclear corrections for
deuterium in F

�

2 /F
�

2 ; its change relative to CTEQ5 is
a plausible range for d distribution uncertainty in light
of this unresolved question, see Figure 3.

2.3. Resolved discrepancies between PDF fits
and the data

During the duration of this Workshop (March - Nov
1999), two of the outstanding discrepancies between
PDF fits or two sets of the experimental data have
been resolved.

One of these was the near 20% discrepancy at small
x (0.007-0.1) between structure function F2 measured
in muon (NMC) and neutrino (CCFR) deep inelas-
tic scattering [11]. For the purpose of comparison of
these structure functions, NMC F

� �

2 was “corrected”
for nuclear shadowing, measured in muon scattering, to
correspond to F

� � �

2 , and rescaled by the 5/18 charge
rule to convert from muon to neutrino F2. On the other
hand, CCFR result was obtained in the framework of
massless charm quark to avoid kinematic differences
between muon and neutrino scattering off the strange
quark (νs→ µc versus µs→ µs) resulting from mass of
the charm. Any one of the above procedures could have
had an unquantified systematic uncertainty resulting
in the observed disagreement.

New analysis from CCFR, presented at this Work-
shop [12], indicates that the SF measured in CCFR is

Figure 3. The d/u ratio for CTEQ5 and CTEQ5UD
PDF sets, illustrating difference from nuclear correc-
tion for NMC F2 on deuterium. The dotted and dashed
lines correspond to two different assumptions regarding
value of d/u at x=1.

in agreement with the F2 of NMC, within experimental
uncertainties. The analysis used a new measurement
of the difference between neutrino and antineutrino
structure functions xF3, rather than the ∆xF3=4(s-c)
parameterization used earlier. Comparison between
calculations [13] indicated that there were large theo-
retical uncertainties in the charm production modeling
for both ∆xF3 and the “slow rescaling” correction that
converts from massive to massless charm quark frame-
work. Therefore, in the new analysis “slow rescaling”
correction was not applied and ∆xF3 and F2 were
extracted from two parameter fits to the data. The
new measurement agrees well with the Mixed Flavor
Scheme (MFS) for heavy quark production as imple-
mented by MRST group. To compare with charged
lepton scattering data each of the experimental results
were divided by the theoretical predictions for F2, us-
ing either light or heavy quark schemes implemented
by MRST. The ratios of Data/Theory for F

�

2 (CCFR),
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F
�

2 (NMC), and F
�

2 (SLAC) are shown in Figure 4.
Systematic errors, except for the overall normalization
uncertainties, are included. The MFS MRST predic-
tions have higher twist and target mass correction ap-
plied. Apart from resolving the NMC-CCFR discrep-
ancy, the new measurement had also implication of rul-
ing out one of the Variable Flavor Scheme calculations
available on the market [14].

Figure 4. The ratio of the massive F
�

2 measured at
CCFR to the prediction of MFS MRST prediction with
target mass and higher twist corrections applied. Also
shown are the ratios of F2µ (NMC) and F

�

2 (SLAC) to
the MFS MRST predictions.

Another example is that of Drell-Yan production
(pd → µ+µ−) as measured by Fermilab experiment
E772, shown in Figure 5. The MRST fits are compared
to the differential cross section in x � = x1 − x2 and
in
√
τ =

√
M2/s, where x1 and x2 are the target and

projectile fractional momenta, and M - dimuon pair
mass. The discrepancy, visible at high x � and low

√
τ

was hard to reconcile, since in this kinematic region
the dominant contribution to the cross section comes

from u(x1) × [ū(x2) + d̄(x2)] evaluated at x1 ≈ x �
and x2 ≈ 0.03, well constrained by the deep inelastic
scattering data. Since then, the E772 experiment has
reexamined their acceptance corrections and released
an erratum to their earlier measurement [15]. The new
values differ from the old ones only for large x � and
small values of mass M , and the new cross section is
decreased in this region by a factor up to two.
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Figure 5. Drell-Yan production from E772 compared
to the MRST prediction. The theory curves include K
factor of 0.96 and the cross sections for different values
of x � are offset by a factor of 10. Corrected E772 data
reduce the discrepancy at high x � and low τ .

3. Outlook for New Structure Function Mea-
surements

Measurements of neutral and charged current cross
sections in positron - proton collisions at large Q2 from
the 1994-97 data have just been published by HERA
experiments [16,17]. The data sample corresponds to
an integrated luminosity of 35 pb−1. The Q2 evo-
lution of the parton densities of the proton is tested
over 150-30000 GeV2, Bjorken x between 0.0032-0.65,
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and yields no significant deviation from the prediction
of perturbative QCD. These data samples are not yet
sensitive enough to pin down the d quark distribution
at high x, however, an expected 1000 pb−1 in positron
and electron running in years 2001-2005, achievable
after HERA luminosity upgrade, will have a lot to say
about 20% -like effects at high x in the ratio of valence
distributions†.

HERA’s 1995-1999 data sets, not yet included in
the global analysis fits, were plotted against standard
PDFs and showed a good agreement over the new
kinematic range that these data span (extension to
lower yet x and higher Q2 compared to 1994 data) [2].
HERA’s very large statistics and improved precision
will allow further reduction of normalization uncer-
tainty of PDF fits. This is important for QCD pre-
diction like W and Z total cross sections at Tevatron -
current 3% normalization uncertainty in PDFs directly
translates to 3% uncertainty for these cross sections.
Improvements in the measurements may need to go in
hand with progress in the perturbative calculations; it
is likely that NNLO analysis of deep inelastic scatter-
ing data will change the level and/or x dependence of
PDFs at the percentish-type level.

One can expect continued progress in heavy quark
treatment and in the theoretical understanding of soft
gluon and non-perturbative effects in the direct photon
production. In that case, the E706 data are sufficiently
precise to severely constrain the gluon distribution.

One of the few currently active structure function
– related experiments is also NuTeV (Fermilab E815).
Better understanding of charm quark issues (see dis-
cussion in preceding section) and much improved cal-
ibration of NuTeV detector relative to CCFR’s (with
a similar statistical power of the data set) is expected
to yield a more precise measurement of structure func-
tions and differential cross section for ν and ν̄ inter-
action in Fe. Sign-selected beam and several advance-
ments in the NLO theory of heavy quark production
will allow NuTeV to improve systematic uncertainty in
the new measurement of the strange seas s and s̄.

Last but not least, Run II physics promises to be a
good source of new constraints on parton distributions.
W-lepton asymmetry will be measured with much im-
proved precision and in an expanded rapidity range.
New observables are proposed for further exploring
collider constrains on PDFs, e.g., W and Z rapidity
distributions [18]. And hopefully, many of the issues in
jet measurements will be addressed and understood –
they are high on J.Womersley Christmas wish-list! [19]

†Charge current ep→ νX component, of the same order as the
neutral current scattering at very high Q2, directly probes u
(e−p) and d (e+p) distributions at high x.
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Abstract

We present a status report of a variety of projects
related to heavy quark production and parton distri-
butions for the Tevatron Run II.

1. Introduction

The production of heavy quarks, both hadroproduc-
tion and leptoproduction, has become an important
theoretical and phenomenological issue. While the
hadroproduction mode is of direct interest to this work-
shop,[1] we shall find that the simpler leptoproduction
process can provide important insights into the fun-
damental production mechanisms.[2–5] Therefore, in
preparation for the Tevatron Run II, we must consider
information from a variety of sources including charm
and bottom production at fixed-target and collider lep-
ton and hadron facilities.

For example, the charm contribution to the total
structure function F2 at HERA, is sizeable, up to
∼ 25% in the small x region.[4] Therefore a proper
description of charm-quark production is required for a
global analysis of structure function data, and hence a
precise extraction of the parton densities in the proton.
These elements are important for addressing a variety
of issues at the Tevatron.

In addition to the studies investigated at the Run II
workshop series, we want to call attention to the

In particular, in the Run II B-Physics workshop, the stud-
ies of Working Group 4: Production, Fragmentation, Spec-
troscopy, organized by Eric Braaten, Keith Ellis, Eric Lae-

extensive work done in the Standard Model Physics
(and more) at the LHC Workshop organized by
Guido Altarelli, Daniel Denegri, Daniel Froidevaux,
Michelangelo Mangano, Tatsuya Nakada which was
held at CERN during the same period.∗ In particular,
the investigations of the LHC b-production group (con-
venors: Paolo Nason, Giovanni Ridolfi, Olivier Schnei-
der, Giuseppe Tartarelli, Vikas Pratibha) and the QCD
group (convenors: Stefano Catani, Davison Soper, W.
James Stirling, Stefan Tapprogge, Michael Dittmar)
are directly relevant to the material discussed here.
Furthermore, our report limits its scope to the issues
discussed within the Run II workshop; for a recent
comprehensive review, see Ref. [6].

2. Schemes for Heavy Quark Production

Heavy quark production also provides an important
theoretical challenge as the presence of the heavy quark
mass, M , introduces a new scale into the problem.
The heavy quark mass scale, M , in addition to the
characteristic energy scale of the process (which we
will label here generically as E), will require a different
organization of the perturbation series depending on
the relative magnitudes of M and E. We find there
are essentially two cases to consider.†

1. For the case of E ∼M , heavy-quark production
is calculated in the so-called fixed flavor number
(FFN) scheme from hard processes initiated by
light quarks (u, d, s) and gluons, where all effects
of the charm quark are contained in the pertur-
bative coefficient functions. The FFN scheme
incorporates the correct threshold behavior, but
for large scales, E �M , the coefficient functions
in the FFN scheme at higher orders in α � contain
potentially large logarithms ln

�
(E2/M2), which

may need to be resummed.[7–10]

2. For the case of E � M , it is necessary to in-
clude the heavy quark as an active parton in
the proton. This serves to resum the potentially
large logarithms ln

�
(E2/M2) discussed above.

The simplest approach incorporating this idea

nen, William Trischuk, Rick Van Kooten, and Scott Menary,
addressed many issues of direct interest to this subgroup.
The report is in progress, and the web page is located at:
http://www-theory.fnal.gov/people/ligeti/Brun2/
∗The main web page is located at:
http://home.cern.ch/∼mlm/lhc99/lhcworkshop.html
†We emphasize that the choice of a prescription for dealing with
quark masses in the hard scattering coefficients for deeply in-
elastic scattering is a separate issue from the choice of definition
of the parton distribution functions. For all of the prescriptions
discussed here, one uses the standard MS definition of parton
distributions.
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is the so-called zero mass variable flavor num-
ber (ZM-VFN) scheme, where heavy quarks are
treated as infinitely massive below some scale
E ∼M and massless above this threshold. This
prescription has been used in global fits for many
years, but it has an error ofO(M 2/E2) and is not
suited for quantitative analyses unless E �M .

While the extreme limits E � M and E ∼ M
are straightforward, much of the experimental data
lie in the intermediate region As such, the correct
PQCD formulation of heavy quark production, capable
of spanning the full energy range, must incorporate
the physics of both the FFN scheme and the ZM-VFN
scheme. Considerable effort has been made to devise a
prescription for heavy-flavor production that interpo-
lates between the FFN scheme close to threshold and
the ZM-VFN scheme at large E.

The generalized VFN scheme includes the heavy
quark as an active parton flavor and involves matching
between the FFN scheme with three active flavors and
a four-flavor prescription with non-zero heavy-quark
mass. It employs the fact that the mass singulari-
ties associated with the heavy-quark mass can be re-
summed into the parton distributions without taking
the limit M → 0 in the short-distance coefficient func-
tions, as done in the ZM-VFN scheme. This is precisely
the underlying idea of the Aivazis–Collins–Olness–
Tung (ACOT) ACOT scheme[11] which is based on
the renormalization method of Collins–Wilczek–Zee
(CWZ).[12] The order-by-order procedure to imple-
ment this approach has now been systematically es-
tablished to all orders in PQCD by Collins.[13]

Recently, additional implementations of VFN
schemes have been defined in the literature. While
these schemes all agree in principle on the result
summed to all orders of perturbation theory, the way
of ordering the perturbative expansion is not unique
and the results differ at finite order in perturbation
theory. The Thorne–Roberts (TR) [14] prescription
has been used in the MRST recent global analyses
of parton distributions.[15] The BMSN and CNS pre-
scriptions have made use of the O(α2

� ) calculations by
Smith, van Neerven, and collaborators[8,9] to carry
these ideas to higher order. The boundary conditions
on the PDF’s at the flavor threshold become more com-
plicated at this order; in particular, the PDF’s are no
longer continuous across the N to N+1 flavor threshold.
Buza et al.,[8] have computed the matching conditions,
and this has been implemented in an evolution pro-
gram by CSN.[9] More recently, a Simplified-ACOT
(SACOT) scheme inspired by the prescription advo-
cated by Collins [13] was introduced;[16] we describe
this new scheme in Sec. 4.

3. From Low To High Energy Scale

F
2
c

 Q2
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 VFN

Figure 1. F
�
2 for x = 0.01 as a function of Q2 in GeV

for two choices of µ as obtained within the O(α1
� ) FFN

and (ACOT) VFN schemes. For details, see Ref. [17].

To compare the features of the FFN scheme with
the ACOT VFN scheme‡ concretely, we will take the
example of heavy quark production in DIS; the features
we extract from this example are directly applicable
to the hadroproduction case relevant for the Tevatron
Run II. One measure we have of estimating the un-
certainty of a calculated quantity is to examine the
variation of the renormalization and factorization scale
dependence. While this method can only provide a
lower bound on the uncertainty, it is a useful tool.

In Fig. 1, we display the component of F
�
2 for the

s + W → c sub-process at x = 0.01 plotted vs. Q2.
We gauge the scale uncertainty by varying µ from
1/2µ0to 2.0µ0 with µ0 =

√
Q2 +m2� . In this figure,

both schemes are applied to O(α1
� ). We observe that

the FFN scheme is narrower at low Q, and increases
slightly at larger Q. This behavior is reasonable given
that we expect this scheme to work best in the thresh-
old region, but to decrease in accuracy as the unre-
summed logs of ln

�
(Q2/m2� ) increase.

Conversely, the ACOT VFN scheme has quite the
opposite behavior. At low Q, this calculation displays
mild scale uncertainty, but at large Q this uncertainty
is significantly reduced. This is an indication that the
resummation of the ln

�
(Q2/m2� ) terms via the heavy

quark PDF serves to decrease the scale uncertainty at a
given order of perturbation theory. While these general
results were to be expected, what is surprising is the
magnitude of the scale variation. Even in the threshold

‡In this section we shall use the ACOT VFN scheme for this
illustration. The conclusions extracted in comparison to the
FFN scheme are largely independent of which VFN scheme are
used.
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region where Q ∼ m � we find that the VFN scheme is
comparable or better than the FFN scheme.

At present, the FFN scheme has been calculated to
one further order in perturbation theory, O(α2

� ). While
the higher order terms do serve to reduce the scale
uncertainty, it is only at the lowest values of Q that the
O(α2

� ) FFN band is smaller than the O(α1
� ) VFN band.

Recently, O(α2
� ) calculations in the VFN scheme have

been performed;[9] it would be interesting to extend
such comparisons to these new calculations.

Let us also take this opportunity to clarify a mis-
conception that has occasionally appeared in the lit-
erature. The VFN scheme is not required to reduce
to the FFN scheme at Q = m � . While it is true
that the VFN scheme does have the FFN scheme as a
limit, this matching depends on the definitions of the
PDF’s, and the choice of the µ scale.§ In this particular
example, even at Q = m � , the resummed logs in the
heavy quark PDF can yield a non-zero contribution
which help to stabilize the scale dependence of the
VFN scheme result.¶

The upshot is that even in the threshold region, the
resummation of the logarithms via the heavy quark
PDF’s can help the stability of the theory.

4. Simplified ACOT (SACOT) prescription

We investigate a modification of the ACOT scheme
inspired by the prescription advocated by Collins.[13]
This prescription has the advantage of being easy to
state, and allowing relatively simple calculations. Such
simplicity could be crucial for going beyond one loop
order in calculations.‖

Simplified ACOT (SACOT) prescription.
Set M � to zero in the calculation of the
hard scattering partonic functions σ̂ for in-
coming heavy quarks.

For example, this scheme tremendously simplifies
the calculation of the neutral current structure func-
tion F

� � � � �
2 even at O(α1

� ). In other prescriptions, the
tree process γ + c → c + g and the one loop process
γ+c→ cmust be computed with non-zero charm mass,
and this results in a complicated expression.[20] In the
SACOT scheme, the charm mass can be set to zero so
that the final result for these sub-processes reduces to
the very simple massless result.

§The general renormalization scheme is laid out in the CWZ
paper[12]. The matching of the PDF’s at O(α1

s) was computed
in Ref. [18] and Ref. [19]. The O(α2

s) boundary conditions were
computed in Ref. [8].
¶Cf., Ref. [17] for a detailed discussion.
‖See Ref. [16] for a detailed definition, discussion, and
comparisons.
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Figure 2. F
�
2 as a function of Q2 in GeV computed

to O(α1
� ) in the ZM-VFN, FFN, ACOT, and SACOT

schemes using CTEQ4M PDF’s. Fig. a) x = 0.1 , and
Fig. b) x = 0.001. Figures taken from Ref. [16].

While the SACOT scheme allows us to simplify the
calculation, the obvious question is: does this simpli-
fied version contain the full dynamics of the process.
To answer this quantitatively, we compare prediction
for F

� � � � �
2 obtained with 1) the SACOT scheme at

order α1
� with 2) the predictions obtained with the

original ACOT scheme, 3) the ZM-VFN procedure in
which the charm quark can appear as a parton but
has zero mass, and 4) the FFN procedure in which the
charm quark has its proper mass but does not appear
as a parton. For simplicity, we take µ = Q.

In Fig. 2 we show F
�
2 (x,Q) as a function of Q for x =

0.1 and x = 0.001 using the CTEQ4M parton distribu-
tions.[21,22] We observe that the ACOT and SACOT
schemes are effectively identical throughout the kine-
matic range. There is a slight difference observed in
the threshold region, but this is small in comparison
to the renormalization/factorization µ-variation (not
shown). Hence the difference between the ACOT and
SACOT results is of no physical consequence. The
fact that the ACOT and SACOT match extremely well
throughout the full kinematic range provides explicit
numerical verification that the SACOT scheme fully
contains the physics.

Although we have used the example of heavy quark
leptoproduction, let us comment briefly on the im-
plications of this scheme for the more complex case
of hadroproduction.[1,23–25] At present, we have cal-
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culations for the all the O(α2
� ) hadroproduction sub-

processes such as gg → QQ̄ and gQ → gQ. At O(α3
� )

we have the result for the gg → gQQ̄ sub-processes,
but not the general result for gQ→ ggQ with non-zero
heavy quark mass. With the SACOT scheme, we can
set the heavy quark mass to zero in the gQ → ggQ
sub-process and thus make use of the simple result
already in the literature.∗∗ This is just one example
of how the SACOT has the practical advantage of al-
lowing us to extend our calculations to higher orders
in the perturbation theory. We now turn to the case
of heavy quark production for hadron colliders.

5. Heavy Quark Hadroproduction

Figure 3. Differential cross section for b-production
vs. p � comparing the Fixed-Order (FO) and the
Fixed-Order Next-to-Leading-Log (FONLL) result in
the MS scheme. The bands are obtained by vary-
ing independently the renormalization and factoriza-
tion scales. The cross section is scaled by m5� with

m � =
√
m2� + p2� , and

√
s = 1800 GeV , m � = 5 GeV ,

y = 0, with CTEQ3M PDF’s. Figure taken from Cac-
ciari, Greco, and Nason, Ref. [27].

There has been notable progress in the area of
hadroproduction of heavy quarks. The original NLO
calculations of the gg → bb̄ subprocess were performed
by Nason, Dawson, and Ellis [23], and by Beenakker,
Kuijf, van Neerven, Meng, Schuler, and Smith[24].
Recently, Cacciari and Greco[26] have used a NLO
fragmentation formalism to resum the heavy quark
contributions in the limit of large p � ; the result is

∗∗For a related idea, see the fragmentation function formalism
of Cacciari and Greco[26] in the following section.

a decreased renormalization/factorization scale vari-
ation in the large p � region. The ACOT scheme
was applied to the hadroproduction case by Olness,
Scalise, and Tung.[25] More recently, the NLO frag-
mentation formalism of Cacciari and Greco has been
merged with the massive FFN calculation of Nason,
Dawson, and Ellis by Cacciari, Greco, and Nason,[27];
the result is a calculation which matches the FFN cal-
culation at low p � , and takes advantage of the NLO
fragmentation formalism in the high p � region, thus
yielding good behavior throughout the full p � range.
This is displayed in Fig. 3 where we see that this
Fixed-Order Next-to-Leading-Log (FONLL) calcula-
tion displays reduced scale variation in the large p �

region, and matches on the the massive NLO calcu-
lation in the small p � region. Further details can be
found in the report of the LHC Workshop b-production
group.††

6. W + Heavy Quark Production

PDF Set Mass (GeV) LO WQQ̄ NLO

CTEQ1M m � =1.7 96 20 161
MRSD0’ m � =1.7 81 20 138
CTEQ3M m � =1.7 83 20 141
CTEQ3M m � =5.0 0.17 9.09 9.33

Table 3
The W + charm-tagged one-jet inclusive cross section
in pb for LO,W+QQ̄, and NLO (including the W+QQ̄
contribution) using different sets of parton distribution
functions. Table is taken from Ref. [28].

The precise measurement of W plus heavy quark
(W+Q) events provides an important information on
a variety of issues. Measurement of W+Q allows us
to test NLO QCD theory at high scales and investi-
gate questions about resummation and heavy quark
PDF’s. For example, if sufficient statistics are avail-
able, W+charm final states can be used to extract
information about the strange quark distribution. In
an analogous manner, the W+bottom final states are
sensitive to the charm PDF; furthermore, W+bottom
can fake Higgs events, and are also an important back-
ground for sbottom (b̃) searches.

The cross sections for W plus tagged heavy quark jet
were computed in Ref. [28], and are shown in Table 3.

††The LHC Workshop b-production group is organized by
Paolo Nason, Giovanni Ridolfi, Olivier Schneider, Giuseppe
Tartarelli, Vikas Pratibha, and the report is currently in prepa-
ration. The webpage for the b-production group is located at
http://home.cern.ch/n/nason/www/lhc99/
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Figure 4. Differential dσ/dp
�
� for γ plus tagged heavy

quark production as compared with Pythia and the
NLO QCD results. Figure taken from Ref. [29]. NLO
QCD calculations from Ref. [30].

Note that this process has a large K-factor, and hence
comparison between data and theory will provide dis-
cerning test of the NLO QCD theory. While the small
cross sections of these channels hindered analysis in
Run I, the increased luminosity in Run II can make
this a discriminating tool. For example, Run I pro-
vided minimal statistics on W+Q, but there was data
in the analogous neutral current channel γ+Q. The
NLO QCD cross sections for γ plus heavy quark were
computed in Ref. [30]. Fig. 4 displays preliminary
Tevatron data from Run I and the comparison with
both the PYTHIA Monte Carlo and the NLO QCD
calculations; again, note the large K-factor. If similar
results are attainable in the charged current channel
at Run II, this would be revealing.

Extensive analysis the W+Q production channels
were performed in Working Group I: “QCD tools for
heavy flavors and new physics searches,” and we can
make use of these results to estimate the precision to
which the strange quark distribution can be extracted.
We display Fig. 5 (taken from the WGI report[31])
which shows the distribution in x of the s-quarks which
contribute to the W+c process.‡‡ This figure indicates
that there will good statistics in an x-range comparable
to that investigated by neutrino DIS experiments;[2,3]

‡‡For a detailed analysis of this work including selection crite-
ria, see the report of Working Group I: “QCD Tools For Heavy
Flavors And New Physics Searches,” as well as Ref. [31].

Figure 5. Distribution of Events/0.01 vs. x of the
s-quarks which contribute to the s + W → c process.
Figure taken from Ref. [31].

hence, comparison with this data should provide an
important test of the strange quark sea and the under-
lying mechanisms for computing such processes.

7. The Strange Quark Distribution

A primary uncertainty for W+charm production
discussed above comes from the strange sea PDF, s(x),
which has been the subject of controversy for sometime
now. One possibility is that new analysis of present
data will resolve this situation prior to Run II, and
provide precise distributions as an input the the Teva-
tron data analysis. The converse would be that this
situation remains unresolved, in which case new data
from Run II may help to finally solve this puzzle.

The strange distribution is directly measured by
dimuon production in neutrino-nucleon scattering.†

The basic sub-process is νN → µ−cX with a subse-
quent charm decay c→ µ+X ′.

The strange distribution can also be extracted indi-
rectly using a combination of charged (W±) and neu-
tral (γ) current data; however, the systematic uncer-
tainties involved in this procedure make an accurate
determination difficult.[32] The basic idea is to use the
relation

F
� �

2

F
� �

2

=
5

18

{
1− 3

5

(s+ s̄)− (c+ c̄) + ...

q + q̄

}

(1)
†Presently, there are a number of LO analyses, and one NLO
analysis.[2,3]
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Figure 6. Variation of x s(x, µ) for three choices of µ,
and also with a “SR” (slow-rescaling) type correction:
x→ x(1 +m2� /Q2).

to extract the strange distribution. This method is
complicated by a number of issues including the xF3

component which can play a crucial role in the small-x
region—precisely the region where there has been a
long-standing discrepancy.

The structure functions are defined in terms of the
neutrino-nucleon cross section via:

d2σ
� � ¯�

dx dy
=

� 2
F

� �

π

[
F2(1− y) + xF1y

2 ± xF3y(1− y

2
)
]

It is instructive to recall the simple leading-order cor-
respondence between the F ’s and the PDF’s:‡

F
( � � ¯� )

�

2 = x
{
u+ ū+ d+ d̄+ 2s+ 2c

}

xF
( � � ¯� )

�

3 = x
{
u− ū+ d− d̄± 2s∓ 2c

}
(2)

Therefore, the combination ∆xF3:

∆xF3 = xF
� �

3 − xF ¯�
�

3 = 4x{s− c} (3)

can be used to probe the strange sea distribution,
and to understand heavy quark (charm) production.
This information, together with the exclusive dimuon

‡To exhibit the basic structure, the above is taken the limit
of 4 quarks, a symmetric sea, and a vanishing Cabibbo an-
gle. Of course, the actual analysis takes into account the full
structure.[32]
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Figure 7. ∆xF3/2 vs. Q2 for three choices of x. Cal-
culations provided by S. Kretzer.

events, may provide a more precise determination of
the strange quark sea.

To gauge the dependence of ∆xF3 upon various fac-
tors, we first consider xs(x, µ) in Fig. 6, and then the
full NLO ∆xF3 in Fig. 7; this allows us to see the
connection between ∆xF3 and xs(x, µ) beyond leading
order. In Fig. 6 we have plotted the quantity xs(x, µ)
vs. Q2 for two choices of x in a range relevant to the
the dimuon measurements. We use three choices of the
µ2 scale: {Q2, Q2 + m2� , P 2�

max
}. The choices Q2 and

Q2 + m2� differ only at lower values of Q2; the choice
P 2�

max
is comparable to Q2 and Q2 + m2� at x = 0.08

but lies above for x = 0.015. The fourth curve labeled
Q2 + “SR” uses µ2 = Q2 with a “slow-rescaling” type
of correction which (crudely) includes mass effects by
shifting x to x(1 + m2� /Q2); note, the result of this
correction is significant at large x and low Q2.

In Fig. 7 we have plotted the quantity ∆xF3/2 for
an isoscalar target computed to order α1

� . We display
three calculations for three different x-bins relevant to
strange sea measurement. 1) A 3-flavor calculation us-
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ing the GRV98[33] distributions,§ and µ =
√
Q2 +m2.

2) A 3-flavor calculation using the CTEQ4HQ distri-
butions, and µ = Q. 3) A 4-flavor calculation using
the CTEQ4HQ distributions, and µ = Q.

The two CTEQ curves show the effect of the charm
distribution, and the GRV curve shows the effect of
using a different PDF set. Recall that the GRV calcu-
lation corresponds to a FFN scheme.

The pair of curves using the CTEQ4HQ distribu-
tions nicely illustrates how the charm distribution
c(x, µ2) evolves as ln(Q2/m2� ) for increasing Q2; note,
c(x, µ2) enters with a negative sign so that the 4-flavor
result is below the 3-flavor curve. The choice µ = Q
ensures the 3- and 4-flavor calculation coincide at
µ = Q = m � ; while this choice is useful for in-
structive purposes, a more practical choice might be
µ ∼

√
Q2 +m2, cf., Sec. 2, and Ref. [17].

For comparison, we also display preliminary data
from the CCFR analysis.[32] While there is much free-
dom in the theoretical calculation, the difference be-
tween these calculations and the data at low Q values
warrants further investigation.

8. Conclusions and Outlook

A detailed understanding of heavy quark production
and heavy quark PDF’s at the Tevatron Run II will re-
quire analysis of fixed-target and HERA data as well as
Run I results. Comprehensive analysis of the combined
data set can provide incisive tests of the theoretical
methods in an unexplored regime, and enable precise
predictions that will facilitate new particle searches
in a variety of channels. This document serves as a
progress report, and work on these topics will continue
in preparation for the Tevatron Run II.

This work is supported by the U.S. Department
of Energy, the National Science Foundation, and the
Lightner-Sams Foundation.
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PARTON DENSITIES FOR HEAVY
QUARKS

J. Smith†

C.N. Yang Institute for Theoretical Physics, SUNY
at Stony Brook, Stony Brook, NY 11794-3840

Abstract

We compare parton densities for heavy quarks.

Reactions with incoming heavy (c,b) quarks are of-
ten calculated with heavy quark densities just like
those with incoming light mass (u,d,s) quarks are
calculated with light quark densities. The heavy
quark densities are derived within the framework of
the so-called zero-mass variable flavor number scheme
(ZM-VFNS). In this scheme these quarks are described
by massless densities which are zero below a specific
mass scale µ. The latter depends on m � or m � . Let us
call this scale the matching point. Below it there are
n � massless quarks described by n � massless densities.
Above it there are n � +1 massless quarks described by
n � +1 massless densities. The latter densities are used
to calculate processes with a hard scale M � m � ,m � .
For example in the production of single top quarks via
the weak process q � + b → q� + t, where q � , q � are
light mass quarks in the proton/antiproton, one can
argue that M = m � should be chosen as the large scale
and m � can be neglected. Hence the incoming bottom
quark can be described by a massless bottom quark
density.

The generation of these densities starts from the so-
lution of the evolution equations for n � massless quarks
below the matching point. At and above this point
one solves the evolution equations for n � + 1 massless
quarks. However in contrast to the parameterization
of the x-dependences of the light quarks and gluon
at the initial starting scale, the x dependence of the
heavy quark density at the matching point is fixed.
In perturbative QCD it is defined by convolutions of
the densities for the n � quarks and the gluon with
specific operator matrix elements (OME’s), which are
now know up to O(α2

� ) [1]. These matching conditions
determine both the ZM-VFNS density and the other
light-mass quark and gluon densities at the matching
points. Then the evolution equations determine the
new densities at larger scales. The momentum sum
rule is satisfied for the n � + 1 quark densities together
with the corresponding gluon density.

†Work supported in part by the NSF grant PHY-9722101
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Figure 1. The charm quark density xcNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c

2
)2.

Figure 2. Same as Fig. 1 for the NLO results from
MRST98 set 1.

Parton density sets contain densities for charm and
bottom quarks, which generally directly follow this ap-
proach or some modification of it. The latest CTEQ
densities [2] use O(α � ) matching conditions. The x
dependencies of the heavy c and b-quark densities are
zero at the matching points. The MRST densities [3]
have more complicated matching conditions designed
so that the derivatives of the deep inelastic structure
functions F2 and F � with regard to Q2 are continuous
at the matching points. Recently we have provided
another set of ZM-VFNS densities [4], which are based

Figure 3. Same as Fig. 1 for the NLO results from
CTEQ5HQ.

on extending the GRV98 three-flavor densities in [5] to
four and five-flavor sets. GRV give the formulae for
their LO and NLO three flavor densities at very small
scales. They never produced a c-quark density but
advocated that charm quarks should only exist in the
final state of production reactions, which should be cal-
culated from NLO QCD with massive quarks as in [6].
We have evolved their LO and NLO densities across
the matching point µ = m � with O(α2

� ) matching
conditions to provide LO and NLO four-flavor densi-
ties containing massless c-quark densities. Then these
LO and NLO densities were evolved between µ = m �

and µ = m � with four-flavor LO and NLO splitting
functions. At this new matching point the LO and
NLO four-flavor densities were then convoluted with
the O(α2

� ) OME’s to form five-flavor sets containing
massless b-quarks. These LO and NLO densities were
then evolved to higher scales with five-flavor LO and
NLO splitting functions. Note that the O(α2

� ) match-
ing conditions should really be used with NNLO split-
ting functions to produce NNLO density sets. However
the latter splitting functions are not yet available, so
we make the approximation of replacing the NNLO
splitting functions with NLO ones.

In this short report we would like to compare the
charm and bottom quark densities in the CS, MRS and
CTEQ sets. We concentrate on the five-flavor densi-
ties, which are more important for Tevatron physics.
In the CS set they start at µ2 = m2� = 20.25 GeV2.
At this scale the charm densities in the CS, MRST98
(set 1) and CTEQ5HQ sets are shown in Figs. 1 – 3
respectively. Since the CS charm density starts off neg-
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Figure 4. The bottom quark density xbNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c

2
)2.

ative for small x at µ2 = m2� = 1.96 GeV2 it evolves
less than the corresponding CTEQ5HQ density. At
larger µ2 all the CS curves in Fig. 1 are below those
for CTEQ5HQ in Fig. 3 although the differences are
small. In general the CS c-quark densities are more
equal to those in the MRST (set 1) in Fig. 2.

Figure 5. Same as Fig. 4 for the NLO results from
MRST98 set 1.

At the matching point µ2 = 20.25 GeV2 the b-quark
density also starts off negative at small x as can be seen
in Fig.4, which is a consequence of the explicit form of

the OME’s in [1]. At O(α2
� ) the OME’s have nonlog-

arithmic terms which do not vanish at the matching
point and yield a finite function in x, which is the
boundary value for the evolution of the b-quark den-
sity. This negative start slows down the evolution of
the b-quark density at small x as the scale µ2 increases.
Hence the CS densities at small x in Fig. 4 are smaller
than the MRST98 (set 1) densities in Fig. 5 and the
CTEQ5HQ densities in Fig. 6 at the same values of µ2.
The differences between the sets are still small, of the
order of five percent at small x and large µ2. Hence
it should not really matter which set is used to cal-
culate cross sections for processes involving incoming
b-quarks at the Tevatron.

Figure 6. Same as Fig. 4 for the NLO results from
CTEQ5HQ.

We suspect that the differences between these results
for the heavy c and b-quark densities are primarily
due to the different gluon densities in the three sets
rather to than the effects of the different boundary
conditions. This could be checked theoretically if both
LO and NLO three-flavor sets were provided by MRST
and CTEQ at small scales. Then we could rerun our
programs to generate sets with O(α2

� ) boundary condi-
tions. However these inputs are not available. We note
that CS uses the GRV98 LO and NLO gluon densities,
which are rather steep in x and generally larger than
the latter sets at the same values of µ2. Since the
discontinuous boundary conditions suppress the charm
and bottom densities at small x, they enhance the
gluon densities in this same region (in order that the
momentum sum rules are satisfied). Hence the GRV98
three flavour gluon densities and the CS four and five
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flavor gluon densities are generally significantly larger
than those in MRST98 (set 1) and CTEQ5HQ. Unfor-
tunately experimental data are not yet precise enough
to decide which set is the best one. We end by noting
that all these densities are given in the MS scheme.
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FROM LEPTON PAIR PRODUCTION
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Abstract

The hadroproduction of lepton pairs with mass Q
and finite transverse momentum Q � is described in
perturbative QCD by the same partonic subprocesses
as prompt photon production. We demonstrate that,
like prompt photon production, lepton pair production
is dominated by quark-gluon scattering in the region
Q � > Q/2. This feature leads to sensitivity to the
gluon density in kinematical regimes accessible in col-
lider and fixed target experiments, and it provides a
new independent method for constraining the gluon
density.

1. Introduction

The production of lepton pairs in hadron collisions
h1h2 → γ∗X ; γ∗ → ll̄ proceeds through an intermedi-
ate virtual photon via qq̄ → γ∗, and the subsequent
leptonic decay of the virtual photon. Traditionally,
interest in this Drell-Yan process has concentrated on
lepton pairs with large mass Q which justifies the ap-
plication of perturbative QCD and allows for the ex-
traction of the antiquark density in hadrons [1].

Prompt photon production h1h2 → γX can be cal-
culated in perturbative QCD if the transverse mo-
mentum Q � of the photon is sufficiently large. Be-
cause the quark-gluon Compton subprocess is domi-
nant, gq → γX , this reaction provides essential in-
formation on the gluon density in the proton at large
x [2]. Unfortunately, the analysis suffers from frag-
mentation, isolation, and intrinsic transverse momen-
tum uncertainties. Alternatively, the gluon density can
be constrained from the production of jets with large
transverse momentum at hadron colliders [3], but the
information from different experiments and colliders is
ambiguous.

‡Supported by the U.S. Department of Energy, Division of High
Energy Physics, under Contract W-31-109-ENG-38.
§Supported by Bundesministerium für Bildung und Forschung
under Contract 05 HT9GUA 3, by Deutsche Forschungsgemein-
schaft under Contract KL 1266/1-1, and by the European Com-
mission under Contract ERBFMRXCT980194.
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In this paper we demonstrate that, like prompt pho-
ton production, lepton pair production is dominated by
quark-gluon scattering in the region Q � > Q/2. This
realization means that new independent constraints on
the gluon density may be derived from Drell-Yan data
in kinematical regimes that are accessible in collider
and fixed target experiments but without the theo-
retical and experimental uncertainties present in the
prompt photon case.

In Sec. 2, we review the relationship between vir-
tual and real photon production in hadron collisions in
next-to-leading order QCD. In Sec. 3 we present our
numerical results, and Sec. 4 is a summary.

2. Next-to-leading order qcd formalism

In leading order (LO) QCD, two partonic subpro-
cesses contribute to the production of virtual and real
photons with non-zero transverse momentum: qq̄ →
γ(∗)g and qg → γ(∗)q. The cross section for lepton pair
production is related to the cross section for virtual
photon production through the leptonic branching ra-
tio of the virtual photon α/(3πQ2). The virtual photon
cross section reduces to the real photon cross section
in the limit Q2 → 0.

The next-to-leading order (NLO) QCD corrections
arise from virtual one-loop diagrams interfering with
the LO diagrams and from real emission diagrams.
At this order 2 → 3 partonic processes with incident
gluon pairs (gg), quark pairs (qq), and non-factorizable
quark-antiquark (qq̄2) processes contribute also. Sin-
gular contributions are regulated in n=4-2ε dimensions
and removed through MS renormalization, factoriza-
tion, or cancellation between virtual and real contri-
butions. An important difference between virtual and
real photon production arises when a quark emits a
collinear photon. Whereas the collinear emission of a
real photon leads to a 1/ε singularity that has to be
factored into a fragmentation function, the collinear
emission of a virtual photon yields a finite logarithmic
contribution since it is regulated naturally by the pho-
ton virtuality Q. In the limit Q2 → 0 the NLO virtual
photon cross section reduces to the real photon cross
section if this logarithm is replaced by a 1/ε pole. A
more detailed discussion can be found in [4].

The situation is completely analogous to hard photo-
production where the photon participates in the scat-
tering in the initial state instead of the final state. For
real photons, one encounters an initial-state singularity
that is factored into a photon structure function. For
virtual photons, this singularity is replaced by a loga-
rithmic dependence on the photon virtuality Q [5].

A remark is in order concerning the interval in Q � in
which our analysis is appropriate. In general, in two-

scale situations, a series of logarithmic contributions
will arise with terms of the type α

�
� ln

�
(Q/Q � ). Thus,

if either Q � >> Q or Q � << Q, resummations of
this series must be considered. For practical reasons,
such as event rate, we do not venture into the domain
Q � >> Q, and our fixed-order calculation should be
adequate. On the other hand, the cross section is large
in the region Q � << Q. In previous papers [4], we
compared our cross sections with available fixed-target
and collider data on massive lepton-pair production,
and we

were able to establish that fixed-order perturba-
tive calculations, without resummation, should be re-
liable for Q � > Q/2. At smaller values of Q � ,
non-perturbative and matching complications intro-
duce some level of phenomenological ambiguity. For
the goal we have in mind, viz., contraints on the gluon
density, it would appear best to restrict attention to
the region Q � ≥ Q/2, but below Q � >> Q.

3. Predicted cross sections

In this section we present numerical results for the
production of lepton pairs in pp̄ collisions at the Teva-
tron with center-of mass energy

√
S = 1.8 and 2.0

TeV. We analyze the invariant cross section Ed3σ/dp3

averaged over the rapidity interval -1.0 < y < 1.0.
We integrate the cross section over various intervals
of pair-mass Q and plot it as a function of the trans-
verse momentum Q � . Our predictions are based on
a NLO QCD calculation [6] and are evaluated in the
MS renormalization scheme. The renormalization and
factorization scales are set to µ = µ � =

√
Q2 +Q2� .

If not stated otherwise, we use the CTEQ4M parton
distributions [7] and the corresponding value of Λ in
the two-loop expression of α � with four flavors (five if
µ > m � ). The Drell-Yan factor α/(3πQ2) for the decay
of the virtual photon into a lepton pair is included in
all numerical results.

In Fig. 1 we display the NLO QCD cross section for
lepton pair production at the Tevatron at

√
S = 1.8

TeV as a function of Q � for four regions of Q. The
regions of Q have been chosen to avoid resonances,
i.e. between 2 GeV and the J/ψ resonance, between
the J/ψ and the Υ resonances, above the Υ’s, and a
high mass region. The cross section falls both with
the mass of the lepton pair Q and, more steeply, with
its transverse momentum Q � . No data are available
yet from the CDF and D0 experiments. However,
prompt photon production data exist to Q � ' 100
GeV, where the cross section is about 10−3 pb/GeV2.
It should be possible to analyze Run I data for lepton
pair production to at least Q � ' 30 GeV where one
can probe the parton densities in the proton up to
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Figure 1. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pp̄ → γ∗X at

√
S = 1.8 TeV in

non-resonance regions of Q. The cross section falls
with the mass of the lepton pair Q and, more steeply,
with its transverse momentum Q � .

x � = 2Q � /
√
S ' 0.03. The UA1 collaboration mea-

sured the transverse momentum distribution of lepton
pairs at

√
S = 630 GeV up to x � = 0.13 [8], and their

data agree well with our theoretical results [4].
The fractional contributions from the qg and qq̄ sub-

processes through NLO are shown in Fig. 2. It is evi-
dent that the qg subprocess is the most important sub-
process as long as Q � > Q/2. The dominance of the
qg subprocess diminishes somewhat with Q, dropping
from over 80 % for the lowest values of Q to about 70 %
at its maximum for Q ' 30 GeV. In addition, for very
largeQ � , the significant luminosity associated with the
valence dominated q̄ density in pp̄ reactions begins to
raise the fraction of the cross section attributed to the
qq̄ subprocesses. Subprocesses other than those initi-
ated by the qq̄ and qg initial channels are of negligible
import.

We update the Tevatron center-of-mass energy to
Run II conditions (

√
S = 2.0 TeV) and use the latest

global fit by the CTEQ collaboration (5M). Figure 3
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Figure 2. Contributions from the partonic sub-
processes qg and qq̄ to the invariant cross section
Ed3σ/dp3 as a function of Q � for pp̄ → γ∗X at

√
S

= 1.8 TeV. The qg channel dominates in the region
Q � > Q/2.

demonstrates that the larger center-of-mass energy in-
creases the invariant cross section for the production of
lepton pairs with mass 5 GeV < Q < 6 GeV by 5 % at
low Q � ' 1 GeV and 20 % at high Q � ' 100 GeV. In
addition, the expected luminosity for Run II of 2 fb−1

should make the cross section accessible to Q � ' 100
GeV or x � ' 0.1. This extension would constrain the
gluon density in the same regions as prompt photon
production in Run I.

Next we present a study of the sensitivity of collider
and fixed target experiments to the gluon density in
the proton. The full uncertainty in the gluon density
is not known. Here we estimate this uncertainty from
the variation of different recent parametrizations. We
choose the latest global fit by the CTEQ collaboration
(5M) as our point of reference [3] and compare results
to those based on their preceding analysis (4M[7]) and
on a fit with a higher gluon density (5HJ) intended
to describe the CDF and D0 jet data at large trans-
verse momentum. We also compare to results based on
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Figure 3. Invariant cross section Ed3σ/dp3 as a
function of Q � for pp̄ → γ∗X and two different
center-of-mass energies of the Tevatron (Run 1:

√
S =

1.8 TeV, Run 2:
√
S = 2.0 TeV). The cross section for

Run 2 is 5 to 20 % larger, depending on Q � .

global fits by MRST [2], who provide three different
sets with a central, higher, and lower gluon density,
and to GRV98 [9]∗.

In Fig. 4 we plot the cross section for lepton pairs
with mass between the J/ψ and Υ resonances at Run II
of the Tevatron in the region between Q � = 10 and 30
GeV (x � = 0.01 . . .0.03). For the CTEQ parametriza-
tions we find that the cross section increases from 4M
to 5M by 2.5 % (Q � = 30 GeV) to 5 % (Q � = 10
GeV) and from 5M to 5HJ by 1 % in the whole
Q � -range. The largest differences from CTEQ5M are
obtained with GRV98 at low Q � (minus 10 %) and
with MRST(g↑) at large Q � (minus 7%).

The theoretical uncertainty in the cross section can
be estimated by varying the renormalization and fac-

∗In this set a purely perturbative generation of heavy flavors
(charm and bottom) is assumed. Since we are working in a
massless approach, we resort to the GRV92 parametrization for
the charm contribution [10] and assume the bottom contribution
to be negligible.
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Figure 4. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pp̄ → γ∗X at

√
S = 2.0 TeV in the

region between the J/ψ and Υ resonances. The largest
differences from CTEQ5M are obtained with GRV98 at
low Q � (minus 10 %) and with MRST(g↑) at large Q �

(minus 7 %).

torization scale µ = µ � around the central value√
Q2 +Q2� . Figure 5 shows this variation for pp̄ →

γ∗X at
√
S = 2.0 TeV in the region between the

J/ψ and Υ resonances. In the interval 0.5 <
µ/
√
Q2 +Q2� < 2 the dependence of the cross section

on the scale µ = µ � drops from±15% (LO) to the small
value ±2.5% (NLO). The K-factor ratio (NLO/LO) is
approximately 2, as one might expect naively.

A similar analysis for Fermilab’s fixed target experi-
ment E772 [11] is shown in Fig. 6. In this experiment, a
deuterium target is bombarded with a proton beam of
momentum plab = 800 GeV, i.e.

√
S = 38.8 GeV. The

cross section is averaged over the scaled longitudinal
momentum interval 0.1 < x � < 0.3. In fixed target
experiments one probes substantially larger regions of
x � than in collider experiments. Therefore one expects
greater sensitivity to the gluon distribution in the pro-
ton. We find that use of CTEQ5HJ increases the cross
section by 7 % (26 %) w.r.t. CTEQ5M at Q � = 3
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Figure 5. Invariant cross section Ed3σ/dp3 as a func-
tion of the renormalization and factorization scale µ =
µ � for pp̄ → γ∗X at

√
S = 2.0 TeV in the region be-

tween the J/ψ and Υ resonances andQ � = 5.5 GeV. In
the interval 0.5 < µ/

√
Q2 +Q2� < 2 the dependence of

the cross section on the scale µ = µ � drops from ±15%
(LO) to ±2.5% (NLO). The K-Factor (NLO/LO) is
approximately 2.

GeV (Q � = 6 GeV) and by 134 % at Q � = 10 GeV.
With MRST(g↓) the cross section drops relative to the
CTEQ5M-based values by 17 %, 40 %, and 59 % for
these three choices of Q � .

Figure 7 shows the variation of the fixed target cross
section on the renormalization and factorization scale
µ = µ � . In the interval 0.5 < µ/

√
Q2 +Q2� < 2

the dependence decreases from ±49% (LO) to ±37%
(NLO). An optimal scale choice might be µ = µ � =√
Q2 +Q2� /4, where the points of Minimal Sensitiv-

ity (maximum of NLO) and of Fastest Apparent Con-
vergence (LO=NLO) nearly coincide. At µ = µ � =√
Q2 +Q2� , the K-factor ratio is 2.6. The NLO

cross section turns negative at the lowest scale shown
µ = µ � =

√
Q2 +Q2� /8 ' 1 GeV, a value too low to

guarantee perturbative stability.

4. Summary

The production of Drell-Yan pairs with low mass
and large transverse momentum is dominated by gluon
initiated subprocesses. In contrast to prompt photon
production, uncertainties from fragmentation, isola-

pN → γ*X at plab = 800 GeV
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Figure 6. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pN → γ∗X at plab = 800 GeV. The
cross section is highly sensitive to the gluon distribu-
tion in the proton in regions of x � where it is poorly
constrained in current analyses.

tion, and intrinsic transverse momentum are absent.
The hadroproduction of low mass lepton pairs is there-
fore an advantageous source of information on the
parametrization and size of the gluon density. The
increase in luminosity of Run II increases the accessible
region of x � from 0.03 to 0.1. The theoretical uncer-
tainty has been estimated from the scale dependence
of the cross sections and found to be very small for
collider experiments.
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CONCLUSION: MANIFESTO

Our goal in this conclusion is not to summarize each
of the individual contributions, but to introduce simple
guidelines, a “Manifesto”, for Run II analysis †:

• Each analysis should provide a way to calculate
the Likelihood for their data, the probability of
the data given a theory prediction.

• The likelihood information should be stored per-
manently and made available.

The current practice is generally to take experimen-
tal data, correct for acceptance and smearing and com-
pare the result to the theoretical predictions. In many
cases, the acceptance and smearing corrections depend
on the theoretical prediction and thus the practice may
lead to uncontrolled uncertainties. Data are generally
presented as tables of central values with one-sigma
standard deviation. That information is clearly not
enough to reconstruct the Likelihood when the uncer-
tainties are not Gaussian distributed. Hence the first
guideline of our Manifesto to provide a way to calcu-
late the likelihood, the probability of the data given
a theory. The likelihood contains all the information
about the experiment and is the basis for any analysis.
It should consist of a code and necessary input tables
of “data”. The code can be as simple as a χ2 calcula-
tion when all the appropriate conditions are met, but
will be significantly more involved in the general case,
see [2]. The likelihood function should be stored in a
format which remains valid for several decades. This
means ASCII format for data and simplicity in the
code. This is important if we want the experimental
data to remain useful even as theoretical calculations
evolve. If the experimental results are not tied to the-
ory as it stands in the year 2001, they we will be able
to continue to use them, even as the theory evolves
from NLO to NNLO to resummed calculation.

The likelihood functions should be stored in a central
repository and treated in the same fashion as papers‡.
This is important because Collaboration evolve over
time and eventually disappear.

Note that the burden is of course not just on the
experimental side. Theoreticians need to provide pre-
dictions with understood theoretical uncertainties over
a defined kinematic range. Numerical calculations
should be made more efficient. Codes are usually writ-
ten with the anticipation that they will be run a few
times with a few different PDFs. One can anticipate
that if the goal to extract uncertainties for the PDFs

†clearly this manifesto could be applied to any experiment
‡Auxiliary files in the FNAL preprints database may be one
location or Web pages
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from data is to be reached that these codes will have
to be run many orders of magnitude more. Event gen-
erators are preferable as they allow a better match to
experimental cuts and the possibility of comparison of
smeared theory to raw data. A central repository for
the theoretical code would also be very helpful.

In this series of workshops several groups reported
significant progress towards extracting PDFs from
data with uncertainties [2,3]. Note also that other
groups, not connected to this workshop [4], have re-
ported results on PDF uncertainties since this work-
shop started. We are therefore optimistic that realistic
PDF uncertainties will be available from several groups
by the start of Run II at the Tevatron.

Progress has also been made on the study of the
best way to present data [5] for Run II. Clearly, the
use of the Run II Tevatron data to their full potential
will require planning and care through a collaborative
effort between phenomenologists and experimentalists.
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1. Diffraction

The word “diffraction” covers a rather large class
of events at colliders and fixed target machines. The
central thread in all the processes one calls diffractive is
a rapidity gap (where no particles are produced) which
is large enough to guarantee that no flavor or color
quantum numbers are exchanged between the colliding
particles. Thus, for example at a proton-antiproton
collider the reaction p+ p̄→ p∗+ p̄∗ is diffractive if the
particles (or jets) making up the p∗ and the particles
(or jets) making up the p̄∗ are separated by a rapidity
gap ∆Y which is large enough to guarantee that the
flavor and color quantum numbers of p∗ are the same as
p and those of p̄∗ the same as p̄. ∆Y ≥ 3 is a common
criterion for such a gap size. The physics being studied
varies considerably according to the type of diffraction
and so we separate our discussion into (somewhat arbi-
trary) categories and attempt to highlight the physics
issues in each of these categories. The emphasis here
is physics at Fermilab, but there are often complemen-
tary reactions at HERA. The contrast and comparison
between diffraction at these two colliders yields much
more insight than the study of diffraction at either
collider in isolation.

2. Soft Diffraction

Regge Theory gives a good description of two-body
and quasi-two-body reactions, including diffraction, at
ISR energies and below. This Regge picture contin-
ues to describe total and elastic cross sections through
collider energies. However, it is known from studies
of elastic and total cross sections of proton-proton and
proton-antiproton scattering that the unitarity limit
(blackness) has been reached for central impact pa-
rameter collisions. It is then somewhat of a mystery
why the simple Regge pole picture, a picture only valid
far from unitarity limits, works so well for total and
elastic scattering. Soft diffraction adds a new piece of

information here. Although the Regge pole picture fits
the total and elastic cross sections at collider energies
it does not work for diffraction [1,2]. The growth in
the diffraction cross section is much less rapid through
the collider energy region than predicted by fits at ISR
energies and below. This fits nicely with the picture
that central collisions are unitarity saturating but be-
come weaker with increasing impact parameter. Let’s
see qualitatively how this looks.

A high energy proton is a state having many degrees
of freedom which are built out of quarks and gluons.
Schematically one may write

|ψproton〉 =
∑

�
|ψ � 〉c � (1)

where i labels a state in terms of the fundamental
degrees of freedom and where

∑
� |c � |2 = 1. From

studying elastic and total cross sections we know that
S(b)|ψ � � � � � � 〉 is small when b, the impact parameter,
is small where S is the S-matrix for elastic reactions.
This means that S(b)|ψ � 〉 is small at central impact pa-
rameters for all i having non-negligible c � . This in turn
gives equal inelastic and elastic cross sections because
the T-matrix defined by

T (b) = i(1− S(b)) (2)

becomes equal to i at small impact parameters.
Diffraction occurs when S(b)|ψ � 〉 is zero for some con-
figurations, i, and far from zero for other configura-
tions. In such a case the “shadow” of the inelastic
collisions is not just the proton state but a wide variety
of other states as well, that is diffractive states. Below
ISR energies the proton is not black at any impact
parameter and the shadow of these inelastic events
is both elastic scattering and diffractive production.
Here Regge theory works well. As one goes through
the ISR region and into collider energies, central im-
pact parameter collisions are becoming black and these
regions contribute more strongly to elastic scattering
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and give much less diffraction than at lower energies.
Diffraction comes from those impact parameters where
the S-matrix is changing from strong to relatively weak
interactions. The Regge picture (pomeron exchange)
now does not work because a single pomeron cannot
properly describe a region where S ≈ 0. In Regge lan-
guage one needs multiple pomeron exchange for small
impact parameter collisions and this considerably com-
plicates the whole Regge picture and robs it of much
of its predictive power.

Thus we qualitatively understand the behavior of the
soft diffractive cross section. Attempts to make this
explanation more quantitative are hampered by the
lack of control over nonperturbativie QCD, but there
are interesting phenomenological attempts in terms of
multiple pomeron exchange [8] (absorption) and a sug-
gestion that the “pomeron flux” may in some sense
need to be renormalized as one reaches unitarity lim-
its [1,2].

3. Hard Diffraction

We have seen that soft diffraction comes about at im-
pact parameters corresponding to the transition from
the region where S = 0 to the region where S = 1.
This should also be the case for hard diffraction at
Fermilab, while new elements come into diffraction at
HERA, partly because a virtual photon is weakly in-
teracting, and partly because a virtual photon is not
quite a “state.”

The motivation for looking at hard diffraction is
clear. Unbiased hard interactions probe the parton
structure of the proton and tell how many quarks and
gluons are in a proton. In hard diffraction one probes
the quark and gluon structure of diffraction itself. This
is often described in a picturesque language as saying
that hard diffraction studies the quark and gluon dis-
tribution of the pomeron [2–4] In a typical Fermilab
diffractive reaction

proton(p) + antiproton (p̄)→ proton (p′) +X

with a large rapidity gap between p′ and X one often
pictures the process as p → p′+ pomeron followed by
the reaction

pomeron (p− p′) + antiproton(p̄)→ X.

If there are jets in X then this reaction can be used
to study the parton structure of the pomeron and the
antiproton in a standard way. This picture is a lit-
tle suspect because we have already seen that in low
impact parameter reaction a single pomeron does not
dominate diffractive reactions. Also it is far from clear
in what sense a pomeron can be treated as an incoming
state. Nevertheless, it is clear that hard diffraction

does study what partons are involved in diffractive
reactions, and one may consider the whole description
in terms of the structure of the pomeron as simply
a picturesque language for describing the quark and
gluon structure of diffraction. Similar hard diffraction
can be studied at HERA [5] with the reaction

proton(p)+photon (Q)→ proton(p′) +X

with, again, a rapidity gap between p′ and the particles
making up X.

Comparing hard diffraction at Fermilab and HERA
gives a disagreement between the pomeron structure
function of about an order of magnitude [3]. This is
strong evidence for factorization breaking with HERA
distributions much larger than the corresponding Fer-
milab ones. This result is not unexpected, and the
cause is the same as that leading to the slowing of
the growth of soft diffraction. Namely the pomeron
is not really a universal object. In pomeron language
there should be many pomeron exchanges occurring at
Fermilab because unitarity bounds are being reached.
The hard part of the reaction then does measure prop-
erties of this exchange. At HERA the exchange is much
simpler because deep inelastic scattering is a point-like
probe and it is this probe itself which is one of the
scatterers initiating the reaction. Also in deep inelastic
scattering one can view the virtual photon as turning
into a quark-antiquark pair before the scattering. This
quark-antiquark pair then scatters on the proton and
both elastic and diffractive scattering of this pair will
be counted as diffractive events in deep inelastic scat-
tering. Thus there is no suppression of diffraction of
HERA events at central impact parameter in contrast
to what happens at Fermilab.

The nature of diffraction at HERA and at Fermi-
lab is fundamentally different. In neither case have
theorists been able to frame the discussion in sharp
enough terms to make good use of the large amount of
data which is already available and that which can be
expected in Run II. Thus in the case of Fermilab it is
certainly true that hard diffraction tells us something
about the partonic structure of diffraction. But, to
what extent are we probing the diffraction that occurs
in soft processes at Fermilab, and to what extent is
the hard process creating or modifying the diffraction?
That is, what properties of diffraction are universal?
Similar issues hold at HERA where one might say that
large Q2 diffraction is determining a particular event
rather than measuring any particular property of a
universal quantity, the pomeron.

In fact it may be that the focus on viewing diffrac-
tive hard scattering as probing a preexisting object is
misleading. In particular another point of view has
proved very successful in understanding and correlat-
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ing diffraction and small-x structure functions in a
low to moderate Q2 regime at HERA. In this picture
one chooses a frame where the virtual photon breaks
up into a quark-antiquark pair before the scattering.
Then the process is quark-antiquark pair scattering on
a proton. If the scattering is inelastic then the process
contributes to the inelastic part of F2. If the scattering
is elastic then the process contributes to the diffractive
part of F2. Thus, here, hard diffraction is the shadow
of inelastic events. A rather simple model proposed
by Goelec-Biernat and Wüsthoff incorporates unitarity
limits (saturation) for the small-x scattering of moder-
ate spatial-sized quark-antiquark pairs along with the
probability that a photon will breakup into a pair of a
certain size. This model comfortably describes moder-
ate Q2 deep inelastic scattering, F2, and diffraction in
a semiquantitative way which matches well with theo-
retical ideas of saturation and dense gluon systems. It
is a great challenge to theorists to invent a comparably
well-motivated model to deal with hard diffraction at
Fermilab.

4. Rapidity Gaps Between Jets

There is a special class of diffractive events which
have been pioneered at Fermilab in which one looks
for events with a sizeable rapidity gap and where there
is a hard jet on either side of the gap. For a gap size
∆Y ≥ 3 such events constitute about 1% of all two-jet
events at Fermilab and about 10% of all two-jet events
at HERA.

There is a good QCD motivation for studying such
events. The basic hard process is elastic quark-
antiquark (or gluon-gluon) scattering at large momen-
tum transfer and at large rapidity. This seems a good
place to measure the BFKL pomeron. However, for the
rapidity gap to be present it is also necessary that the
spectator parts of the colliding proton and antiproton
not produce particles in the rapidity gap. The prob-
ability that the latter happens is called the “survival
probability” of the gap and is estimated to be about
10% at Fermilab [8]. From the BFKL pomeron point
of view the most unfortunate part of the data is the
fact that the percentage of gap events decreases when
one goes from a center of mass energy of 630 GeV
to 1800 GeV. At Fermilab the 1800 GeV runs should
be predominately gluon jets while at 630 GeV quarks
should dominate the hard scattering. The BFKL con-
tribution (at comparable rapidity gaps) to the gap frac-
tion should be enhanced for hard gluon scattering by
a factor of (

�
c�
F

)2 = ( 9
4 )2 as compared to hard quark

scattering. Thus we might expect the gap fraction to
grow as one goes from 630 GeV to 1800 GeV while in
fact the gap fraction decreases by a factor of 2.

What has gone wrong [9]? The most likely prob-
lem is that the survival probability also has an energy
dependence [8] and that the survival probability is de-
creasing between 630 and 1800 GeV. It may be that
there are still important contributions from secondary
trajectories and that the BFKL pomeron is not dom-
inating the hard scattering. Oderda and Sterman [10]
have a variant on rapidity gaps where one requires less
than a certain amount of transverse energy be emitted
in the gap. This allows the QCD calculation, including
color non-singlet exchanges, to be done reliably, but
it does not eliminate the difficult survival probability
questions. It would be interesting to analyze the data
in the Oderda-Sterman way to see if the survival prob-
abilities become significantly larger, and even more
importantly, to see if the survival probability becomes
energy independent.

There is a very simple picture, the “color evap-
oration” picture, which qualitatively describes the
data [11,12]. Here one takes the hard scattering scat-
tering to be given by a single hard gluon exchange.
For example in p + p̄ → QX + Q̄Y one views the X
as the remnant of p after the quark Q is taken out
and Y the remnant of p̄ after Q̄ is taken out. Q and
Q̄ are the (in this case quark) jets being measured.
Thus X is a 3

¯
×3

¯
representation of color SU(3) while

Q, Q̄, and Y are 3
¯
, 3

¯
∗, and 3

¯
∗×3

¯
∗ representations

respectively. The final state color singlet structure is
then formed just by counting the ways in which the
color representations can be combined into singlets.
For example, Q and X have 27 different color states
of which only one of them is a singlet. It is necessary
to take this singlet in order to have a color singlet state
on one side of the rapidity gap. These simple counting
rules give reasonable numbers for the gap fractions and
predict a decreasing gap fraction as one goes from 630
GeV to 1800 GeV because of the color counting change
when Q and Q̄ are replaced by gluons.

The color evaporation model is an interesting picture
and may be a good hint about how the dynamics is
working. However, without a stronger underlying QCD
framework it will remain an intriguing curiosity. It
is an important challenge to see if a QCD dynamical
framework can be developed which leads to something
like the color evaporation model.

5. BFKL Searches

There has been an important activity at Fermilab,
at HERA and at LEP trying to measure the BFKL
pomeron intercept. In the Fermilab analysis the reac-
tion is

proton(p)+ antiproton (p̄)→ jet(k1) + jet(k2) +X
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where k1⊥ and k2⊥ are greater than 20 GeV, and where
k1/p = x1 and k2/p̄ = x2 are fixed to be the same at
630 and 1800 GeV. If one takes the ratio

R =
σ2

� � � (1800)

σ2
� � � (630)

then BFKL predicts

R =

√
∆Y (630)

∆Y (1800)
exp{(α � − 1)[∆Y (1800)−∆Y (630)]}.

∆Y is the rapidity interval between the two jets, but
this is a purely inclusive measurement so there are no
survival probability worries. At HERA one of the jets
is replaced by the virtual photon and a similar formula
holds. At LEP one simply measures the energy de-
pendence of virtual photon-virtual photon scattering.
Each of the accelerators have strong and weak points.
The LEP analysis is certainly the cleanest, but so far
there is a marginal amount of data. The Fermilab DØ
experiment has very robust jets but ∆Y (630) is only
about 2.4 and one may worry that this is not yet large
enough for BFKL dominance. At HERA the jets have
a rather small k⊥ and the worry is that the jet cross
section has not been properly identified.

Perhaps the surprising result [18] is that both Fer-
milab and HERA suggest that α � is near 1.5, close
to the leading order BFKL calculation. The present
theoretical prejudice is that α � will likely turn out to
be nearer 1.25-1.3 when, and if, the dust settles over
attempts to give a reliable answer for the higher order
corrections. What is perhaps even more striking is that
the BFKL evolution seems to be so prominent in this
inclusive reaction while it appears to be completely
masked by other effects in the more exclusive rapidity
gap analysis.

Monte Carlo calculations [19] incorporating BFKL
evolution suggest that BFKL effects should be sup-
pressed by various kinematic and non-asymptotic ef-
fects. Is there another explanation of the strong
small x growth seen in the Fermilab dijet data and
the HERA forward jet data, or are the Monte Carlos
over-compensating non-leading factors as perhaps the
next-to-leading analytic calculations are doing? Much
remains to be understood.

6. Run II Diffraction Prospects

Improved understanding of this new field of hard
diffraction, requires new detectors for tagging and mea-
suring scattered protons. In Ref [3], new results from
a short data taking period with the CDF Roman pot
spectrometer, show some of the possibilities of this new
sub-detector. In Run II, this detector will be available
for the whole run, and will be more fully exploited.

The CDF Run II plans, including addition of new for-
ward calorimeters and gap veto counters are outlined
in Ref. [20].

DØ is in the process of installing a new Forward Pro-
ton Detector (FPD) (see Ref. [21]). This sub-detector
consists of nine independent spectrometers which will
maximize the acceptance for scattered protons and
anti-protons. The FPD will be fully integrated into
the DØ triggering and data acquisition systems and
will provide unprecedented samples of hard diffractive
events of all types.

Double pomeron exchange is the most intriguing
process that can be studied with these new detec-
tors [14], and there were many talks on this subject at
the workshop [22]. In this process both the incoming
proton and anti-proton are scattered but remain intact,
and a massive central system may be produced. At
the Tevatron objects with a mass of more than 100
GeV could be produced. With both arms instrumented
it would be possible to measure both the proton and
anti-proton using the FPD, and jets (for example) us-
ing the central calorimeter. This allows the kinematics
of the event to be fully determined.

In addition, CDF can expand on its “gap+track”
double pomeron results in Run I, where they tag an
anti-proton and a gap. Although, these events are
not gold-plated like the DØ double-tagged events, the
acceptance penalty of tagging with both proton and
anti-proton is avoided, and are thus the data sample is
larger. DØ, of course can study both types of events,
and combine the results to gain a deeper understanding
of this process. Both collaborations will also be able to
exploit double gap events as done by DØ in Run I [4],
which will be especially valuable for rare events.

Measurement of hard double pomeron exchange
would help determine the pomeron structure and pro-
vide unique information on the pomeron flux. Double
pomeron exchange would have a normalization propor-
tional to the square of the flux factor, unlike other hard
diffractive processes. In addition, this process has been
proposed as a trigger for Higgs production at the LHC,
with optimistic assumptions [15], it might be possible
to observe a handful of Higgs events via this mecha-
nism during Tevatron Run II [17]. While this may be
unlikely, these would be spectacular events with only
the decay products of the Higgs in the central detec-
tor, and a proton and an anti-proton in the forward
pot spectrometers. In any case, knowledge gained at
the Tevatron would indicate if this approach is worth
pursuing at the LHC.

Double pomeron interactions are also an ideal place
to look for glueball production (bound states of gluons)
and states with exotic quantum numbers, and the clean
event topologies would make them easier to detect [14,
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16,17].
In conclusion, the Run II outlook for hard diffraction

and related topics appears to be quite bright and will
require the best efforts of the experimental collabo-
rations along with a recently invigorated theoretical
community to finally unravel the mysterious pomeron.
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We present a phenomenological model of hard diffraction in which the structure of the Pomeron is derived from the
structure of the parent hadron. Predictions for diffractive deep inelastic scattering are compared with data.

The inclusive and diffractive deep inelastic scatter-
ing (DIS) cross sections are proportional to the corre-
sponding F2 structure functions of the proton,

Inclusive DIS
� 2 �

� � � � 2 ∝
� h

2 ( � � � 2)
�

Diffractive DIS
� 3 �

��� � � � � 2 ∝
� D(3)

2 (
�

� � � � 2)
�

where

h and D(3) indicate, respectively, a hard structure
function (at scaleQ2) and a 3-variable diffractive struc-
ture function (integrated over t). The latter depends
not only on the hard scale Q2, but also on the soft
scale, 〈M � 〉 ∼ 1 GeV, which is the relevant scale for
the formation of the gap.

The only marker of the rapidity gap is the variable
ξ. We therefore postulate that the rapidity gap prob-
ability is proportional to the soft parton density at ξ
and write the DDIS (diffractive DIS) cross section as

d3σ

dξdxdQ2
∝ F

�
2 (x,Q2)

x
× F

�
2 (ξ)

ξ
⊗ ξ−norm

where the symbolic notation “⊗ ξ−norm” is used to
indicate that the ξ probability is normalized. Since
x = βξ, the normalization over all available ξ values
involves not only F

�
2 but also F

�
2 , breaking down fac-

torization. It is therefore prudent to write the DDIS
cross section in terms of β instead of x, so that the
dependence of F

�
2 on ξ is shown explicitly:

d3σ

dξdβdQ2
∝ 1

β

[
F

�
2 (βξ,Q2)× F �

2 (ξ)

ξ
⊗ ξ−norm

]

The term in the brackets represents the DDIS struc-

ture function F
� (3)
2 (ξ, β,Q2).

In the next step, we seek guidance from the scaling
behavior of the soft single-diffractive (sd) differential
cross section [1,2],

dσ � �

dM2
∝ 1

(M2)1+ � (no s-dependence!)

which in terms of ξ takes the form

dσ � �

dξ
∝ 1

s2 �
1

ξ1+2 �
︸ ︷︷ ︸

gap probability

×(s′) �

where s′ ≡ M2 is the s-value of the diffractive
sub-system. Noting that ξ is related to the associ-
ated rapidity gap by ∆Y = ln 1� , and that the inte-

gral
∫ 1

( � ◦
� � )

1
� 2ε

���
�
1+2ε = constant, the above equation

may be viewed as representing the product of the to-
tal cross section at the sub-system energy multiplied
by a normalized rapidity gap probability. In analogy
with this experimentally established behavior, we fac-

torize F
� (3)
2 (ξ, β,Q2) into F

�
2 (β,Q2), the sub-energy

DIS cross section, times a normalized gap probability:

F
� (3)
2 (ξ, β,Q2) = P 
 � � (ξ, β,Q2)× F

�
2 (β,Q2)

The gap probability is therefore given by

P 
 � � (ξ, β,Q2) = F
�
2 (βξ,Q2)× F

�
2 (ξ)

ξ
×N(s, β,Q2)

The normalization factor, N(s, β,Q2), is obtained
from the following equation, using ξ � � � = Q2/s,

N−1(s, β,Q2) =
1

f �

∫ 1

�
min

F
�
2 (βξ,Q2)× F

�
2 (ξ)

ξ
dξ

f � is the quark fraction of the hard structure and is
used here because only quarks participate in DIS.

At small x (≤∼ 0.1), the structure functions F
�
2

and F �
2 are represented well by the power law expres-

sions [3] F
�
2 (x,Q2) = A

�
/x

�
h( � 2) and F

�
2 (ξ) = A

�
/ξ

�
s .

Using these forms we obtain

N−1(s, β,Q2) =
1

f �

[
A

�

β
�
h

A
�

λ � + λ �

(
βs

Q2

) �
h+

�
s
]

F
� (3)
2 (ξ, β,Q2) =

1
� 1+λh+λs

× f � (λ � + λ � )
(

� 2
� �

) �
h+

�
s

× � h
� λh

Since in DDIS x is always smaller than ξ, the above

form of F
� (3)
2 , derived for small x, should be valid

for all x when ξ is small; it should also be valid for

all β(= x/ξ). We therefore expect F
� (3)
2 to have the

following ξ and β dependence at small ξ:

F
� (3)
2 (ξ, β,Q2)| �

� � 2 ∝ 1

ξ1+ � n = λ � (Q2) + λ �
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F
� (3)
2 (ξ, β,Q2)| � � � 2 ∝ 1

β
� m = 2λ � (Q2) + λ �

The HERA (non-diffractive) DIS measurements [3]
yield λ � ≈ 0.1, which is in agreement with the value of
ε = α(0) − 1 = 0.104 [4], where α(0) is the intercept
of the Pomeron trajectory at t=0. In the Q2 range
of 10-50 GeV2, where the DDIS data are concentrated,
these measurements yield λ � ≈ 0.3. Using these values
we obtain n = 0.4 and m = 0.7. We therefore expect

Prediction: F
� (3)
2 ∝ 1

ξ1 � 4 ×
1

β0 � 7

We observe the following features:
Factorization
Our prediction exhibits factorization between ξ and β,
in agreement with HERA results at small ξ.
ξ-dependence

In the Regge framework, the ξ-dependence of F
� (3)
2 is

expected to have the “Pomeron flux” form ∼ 1/ξ1+ �

with n = 2ε = 0.2, independent of Q2. In the Q2 range
of 10-50 GeV2, the HERA experiments find that n is
≈ 0.4 and has a small Q2 dependence, in agreement
with our prediction of n = λ � (Q2) + λ � .
β-dependence

The predicted form 1/β
�

for F
� (3)
2 is valid in the

region of (fixed) small ξ and high Q2, where the

x-distribution of F2(x,Q2) has the form A
�
/x

�
h( � 2).

As there are no data points at strictly fixed ξ, we have
selected the following set of five points at Q2 = 45
GeV2 and ξ ≈ 0.01 from Ref. [5] with which to compare

the measured values of F
� (3)
2 with our prediction:

β x ξ = x/β ξ · F � (3)
2 ± stat± syst

0.10 0.00133 0.0133 0.0384± 0.0066± 0.0030
0.20 0.00237 0.0118 0.0406± 0.0061± 0.0026
0.40 0.00421 0.0105 0.0215± 0.0046± 0.0016
0.65 0.00750 0.0115 0.0240± 0.0054± 0.0026
0.90 0.00750 0.0083 0.0088± 0.0041± 0.0005

The following parameters are used in the calculation

of F
� (3)
2 :

√
s = 280 GeV, ξ = 0.01, Q2 = 45 GeV2,

λ � = 0.1, λ � = 0.3, f � = 0.4 [7], and A
�

= 0.2; the
latter was evaluated from F2(Q2 = 50, x = 0.00133) =

1.46 [6] assuming a
� h
� 0.3 dependence. In figure 1, our

prediction for ξ · F � (3)
2 (β) versus β is compared with

the data. The observed agreement both in shape and
normalization is satisfactory, particularly since no free
parameters are used in the calculation.
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The double-diffractive cross section is measured for p̄p interactions which produce a central rapidity gap with width ∆η > 3
at
√
s = 1800 and 630 GeV. Comparisons are made to predictions from Regge theory based on the triple Pomeron amplitude

and factorization and to previous measurements.

Double-diffractive (DD) events are characterized by
the exchange of a color singlet with the quantum num-
bers of the vacuum, the Pomeron, causing both inci-
dent hadrons to dissociate. The dissociated hadrons
produce diffractive mass clusters along their initial di-
rection, while, since the exchanged object does not
radiate as, for example, a colored object would, the
region in between the clusters is empty of particles.

Hard double diffraction (Fig. 1a) has previously
been studied in events with rapidity gaps between jets.
The fraction of dijet events with 1.8 < |η

� � � 1 � � � � 2 | <
3.5, η

� � � 1η
� � � 2 < 0, and E

� � � 1 � � � � 2� > 20 GeV at√
s = 1800 GeV due to color singlet exchange (CSE)

was found to be [1]

R � � � (1800) = [1.13± 0.12(stat)± 0.11(syst)]%,

and for jets with E
� � � 1 � � � � 2� > 8 GeV at

√
s = 630 GeV

[2]

R � � � (630) = [2.7± 0.7(stat)± 0.6(syst)]%,

so that the CSE fraction at 630 GeV is greater than
that at 1800 GeV by a factor of

R(630)/R(1800) = 2.4± 0.7(stat)± 0.6(syst).

The distribution of the CSE fraction as a function of
the rapidity separation between the jets was seen to
drop as the jets reached the edges of the acceptance.
No dependence was observed of the CSE fraction on
mean dijet E � or on jet x, determined from the E �

and η of the jets as x � = e|
�
i|E �� /

√
s.

We have studied soft double diffraction (Fig. 1b)
by looking for central rapidity gaps in minimum-bias
events which have hits in the Beam-Beam Counters
(BBC’s). We looked for gaps which overlap η = 0
rather than the largest gap anywhere in the detector
because the latter method is more likely to be biased
by inefficiencies in the calorimeters. The η of the track
or calorimeter tower above a given threshold with the
smallest |η| for η > 0 (η < 0) is defined to be η � � � ( � � � ).
Events with the lowest-|η| particle in the BBC, 3.2 <
|η| < 5.9, are assigned |η � � � ( � � � )| ≡ 3.3. The data

(a)

p

p
IP

η

φ

(b)

p

p
IP

η

dN
dη

ηη maxmin

ln M1 ln M2
2 2

ln s
Figure 1. A double-diffractive interaction in which
a Pomeron (IP ) is exchanged in a p̄p collision at
center-of-mass energy

√
s, (a) with a hard scattering

producing jets on opposite sides of a rapidity gap, and
(b) producing diffractive masses M1 and M2 separated
by a rapidity gap of width η � � � − η � � � .

are compared to non-diffractive (ND), single-diffractive
(SD), and DD Monte Carlo (MC) simulated events as
a function of η � � � and −η � � � (not shown). Struc-
ture due to different thresholds and efficiencies in the
calorimeter is visible, e.g., at the interface between the
plug and forward calorimeters at η ∼ 2.4.

Figure 2 shows histograms of the data and MC as a
function of ∆η0 = η � � � −η � � � . The SD contribution is
fixed by known cross sections and the fraction of events
passing the BBC trigger in the MC. The ND and DD
contributions are determined as follows. The DD and
non-DD MC distributions are normalized to give the
number of events observed in the data in the region
∆η0 < 0.8 (dominantly ND) and ∆η0 > 3 (domi-
nantly DD). The DD MC uses the differential cross sec-
tions from Regge theory based on the triple Pomeron
amplitude and factorization. The agreement between
data and MC seen in Fig. 2 shows that Regge theory
appears to correctly predict the mass dependence, as
was also observed by the H1 collaboration [3]. Note
that the fluctuations in the ∆η0 distribution are due
to structure in the calorimeter and are followed closely
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by the MC because of careful calibrations derived to
match MC particle p � ’s to observed calorimeter E � ’s.

We find cross sections at
√
s = 1800 (630) GeV by

measuring σ � � A, where A is the detector acceptance
for triggering on diffractive mass clusters. Preliminary
calculations from MC yield A = (48.7± 8.4)% [(61.4±
6.8)%], and

σ � � (
√
s = 1800 GeV,∆η0 ≥ 3) =

4.71± 0.02(stat)
+0 � 92
−0 � 90(syst) mb,

σ � � (
√
s = 630 GeV,∆η0 ≥ 3) =

4.32± 0.01(stat)
+0 � 54
−0 � 76(syst) mb.

The cross sections for all gaps of width ∆y > 2.3,
corresponding to the SD coherence limit of ξ < 0.1,
can be obtained by extrapolation using the differential
cross section shape from Regge theory, and are greater
by a factor of 1.72 (1.67) at

√
s = 1800 (630) GeV.

The resulting cross sections are shown in Fig. 3 along
with results from UA5 [4] and other cross sections at
lower energies [5,6], most of which were derived from
exclusive measurements using factorization relations.
The DD cross sections measured by CDF are an or-
der of magnitude smaller than what is predicted using
Regge theory, but are in general agreement with the
renormalized gap model [7],

The improved plug calorimeters and proposed mini-
plug detectors for CDF in Run II will allow a better
measurement of the DD cross section and hard DD
dijet production, including better resolution of gaps
and jets out to η ≈ 5.5.
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We report results obtained from a study of Roman Pot triggered events with a leading antiproton of beam momentum
fraction 0.905 < xF < 0.975 and 4-momentum transfer squared |t| < 3 GeV2, produced in p̄p collisions at

√
s = 1800 GeV.

Using events which contain two jets with transverse energy EjetT > 7 GeV, the diffractive structure function of the antiproton
is evaluated and compared with expectations based on results obtained at HERA.

We have studied diffractive dijet events produced
in p̄p collisions, which are characterized by two jets
with high transverse energy and a leading (anti)proton
accompanied by a rapidity gap. The rapidity gap,
defined as a region of pseudorapidity devoid of par-
ticles, is associated with the exchange of a Pomeron
(IP ), which is a color-singlet state with vacuum quan-
tum numbers. In this framework, diffractive dijet
events produced in p̄p collisions can be expressed as,
p̄+ p→ [p̄′ + IP ] + p→ p̄′ + Jet1 + Jet2 +X .

Previously, the CDF collaboration studied diffrac-
tive W -boson, dijet and b̄b productions [1,2]. In these
analyses, diffractive production is tagged by the re-
quirement of a forward rapidity gap. The observed
rates of diffractive W -boson, dijet and bb̄ productions
were found to be significantly lower than predictions
based on factorization, while such models describe well
the diffractive DIS and photoproduction data obtained
at HERA [3,4]. The breakdown of factorization ob-
served in the rate comparisons raises the question of
whether the β-distribution is also process dependent,
where β is the momentum fraction of the struck par-
ton in the Pomeron. In this analysis, we measure the
diffractive structure function of the antiproton, and
compare it with expectations based on the diffractive
parton densities obtained in diffractive DIS experi-
ments at HERA [4].

The diffractive data used in this analysis were col-
lected by triggering an antiproton detected in three
Roman Pot (RP) spectrometers. The beam momen-
tum fraction x � = 1 − ξ and the four momentum
squared t of the detected antiproton were reconstructed
from the X-Y RP track position, the position of the
event vertex, and the machine transport matrix. The
non-diffractive (ND) data were collected with a mini-
mum bias (MB) trigger which required a coincidence
of hits on two beam-beam counters (BBC). From these
two data samples, we select diffractive and ND dijet
events with two jets of E � > 7 GeV.

Figs. 1(a) and 1(b) show the RP acceptance and a
lego plot of the inclusive diffractive event sample as a

function of ξ and t, respectively. The fraction of dijet
events in the inclusive diffractive events is shown as a
function of ξ in Fig. 1(c) and t in Fig. 1(d). The frac-
tion is found to increase linearly with increasing ξ, but
no significant t dependence is observed, in agreement
with the UA8 result [5] which showed a flat t depen-
dence in the region 0.9 < |t| < 2.3. The jet E � distri-
butions fall faster with E � in the diffractive events than
in the ND. The diffractive dijets are boosted away from
the leading antiproton in η, and are more back-to-back
in φ than the ND.

In leading order QCD, the cross section ratio, R(x),
of the diffractive to ND dijet productions represents
the ratio of the diffractive to ND effective struc-
ture functions defined as F

( � )
� � (x) = x{g( � )(x) +

4
9

∑
� [q

( � )
� (x) + q̄

( � )
� (x)]}. Thus, the diffractive struc-

ture may be obtained by multiplying the “known” ND
structure by R(x). The x, the momentum fraction
of struck parton in the antiproton, is evaluated from
the jets (including a third jet if E

� � � 3� > 5 GeV) as,

x =
∑

� =1 � 2(3) E
( � )� e−

� (i)

/(2p¯�

0). Fig. 2 shows the ratio

R(x) of the diffractive dijet events to the ND dijet
events for six ξ bins of width ∆ξ = 0.01, where the
two data samples are normalized to the same lumi-
nosity. The distributions are fitted well by the form
R(x) = R0(x/0.0065)−

�

, with similar slopes for all ξ
bins in the region 10−3 < x < 0.5ξ � � � .

The diffractive structure function can be determined
by multiplying the measured R(x) by the known ND
structure function. By changing the variable from x to
β (= x/ξ), we obtain the diffractive structure function
F �� � (β), shown in Fig. 3. This structure function is
compared to that extracted by the H1 collaboration
from diffractive DIS measurements using a QCD anal-
ysis [4]. The dashed (dotted) line in Fig. 3 is obtained
from H1 diffractive parton densities derived with fit 2
(fit 3), scaled down by a factor of 20. The measured
diffractive structure function does not agree with ex-
pectations from the H1 results both in normalization
and shape. Summed over all β, the discrepancy in nor-
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malization is about a factor of 10, in general agreement
with predictions based on the renormalized Pomeron
flux model [6].

In Run 2, the Roman Pot spectrometers will be
placed closer to the antiproton beam, which will enable
us to extend our measurement to lower ξ values. In ad-
dition, the improved plug calorimeters, two proposed
miniplug calorimeters and a set of beam shower coun-
ters (BSC) to tag forward rapidity gaps will provide
the basis for improved studies in hard diffraction.
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Figure 1. Distributions versus ξ and t: (a) Roman Pot
acceptance; (b) inclusive diffractive event sample; (c)
ratio of dijet to inclusive diffractive events versus ξ and
(d) versus t.
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DØ Rapidity Gap Studies

Andrew Brandt (DØ Collaboration)a

aUniversity of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019

DØ Run I Rapidity Gap studies are briefly described.

1. Hard Diffraction Introduction

Inelastic diffractive collisions are responsible for
10–15% of the pp total cross section and have been
described by Regge theory through the exchange of a
pomeron. Diffractive events are characterized by the
absence of significant hadronic particle activity over a
large region of rapidity or pseudorapidity. This empty
region is called a rapidity gap and can be used as an
experimental signature for diffraction. Recent inter-
est in diffraction has centered on the possible partonic
nature of the pomeron in the framework of quantum
chromodynamics (QCD), as suggested by Ingelman
and Schlein [1]. Hard single diffraction (HSD), which
combines diffraction and a hard scatter (such as jet
or W -boson production), can be used to study the
properties of the pomeron.

The pomeron’s partonic nature was first inferred by
the UA8 experiment [2]. Recent analyses of diffrac-
tive jet production [3–5] and diffractive W -boson pro-
duction [6] are consistent with a predominantly hard
gluonic pomeron, but measured rates at the Fermilab
Tevatron are several times lower than predictions based
on data from the DESY ep collider HERA [7].

Current analyses in DØ on diffractive W -boson ex-
change, double pomeron exchange (central jets with a
forward and a backward rapidity gap), and diffractive
jet production all attempt to provide new insight into
the nature of the pomeron and diffractive interactions.
Here we present new measurements from the most ma-
ture of these analyses, diffractive jet production.

2. Diffractive Jet Production

In the DØ detector [8], jets are measured with the
uranium/liquid-argon calorimeters using a fixed-cone
algorithm. The jets are corrected using standard DØ
routines for jet-energy scale [9], except that there is
no subtraction of energy from spectator parton inter-
actions, since these are unlikely for diffractive events.
To identify rapidity gaps, we measure the number of
tiles containing a signal in the LØ forward scintillator
arrays (nLØ), and towers (∆η×∆φ = 0.1× 0.1) above
threshold in the calorimeters (nCAL).

For
√
s = 630 and 1800 GeV, we use triggers

which required at least two jets with transverse energy
E � > 12 or 15 GeV to study the dependence of the
gap fraction on jet location. The forward jet triggers
required the two leading jets to both have η > 1.6 (or
η < −1.6), while the central jet triggers had an offline
requirement of |η| < 1.0. The events in the final data
samples all have a single pp interaction requirement,
a vertex position within 50 cm of the center of the
interaction region, and two leading jets that satisfy
standard quality criteria [10].

The nLØ versus nCAL distributions are shown in
Fig. 1. For forward jet events, these quantities are
defined by the η region on the side opposite the two
leading jets, while for central jet events they are defined
by the forward η interval that has the lower multiplic-
ity. The distributions display a peak at zero multiplic-
ity (nCAL = nLØ = 0), in qualitative agreement with
expectations for a diffractive component in the data.
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Figure 1. Multiplicity distributions at
√
s = 1800 GeV

for (a) forward and (b) central jet events, and at√
s = 630 GeV for (c) forward and (d) central jet

events.
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Table 1
The measured and predicted gap fractions and their ratios.

Gap Fractions
Sample Data Hard Gluon Flat Gluon Soft Gluon Quark
1800 GeV |η| > 1.6 (0.65± 0.04)% (2.2± 0.3)% (2.2± 0.3)% (1.4± 0.2)% (0.79± 0.12)%
1800 GeV |η| < 1.0 (0.22± 0.05% (2.5± 0.4)% (3.5± 0.5)% (0.05± 0.01)% (0.49± 0.06)%
630 GeV |η| > 1.6 (1.19± 0.08)% (3.9± 0.9)% (3.1± 0.8)% (1.9± 0.4)% (2.2± 0.5)%
630 GeV |η| < 1.0 (0.90± 0.06)% (5.2± 0.7)% (6.3± 0.9)% (0.14± 0.04)% (1.6± 0.2)%
Ratios of Gap Fractions

630/1800 |η| > 1.6 1.8± 0.2 1.7± 0.4 1.4± 0.3 1.4± 0.3 2.7± 0.6
630/1800 |η| < 1.0 4.1± 0.9 2.1± 0.4 1.8± 0.3 3.1± 1.1 3.2± 0.5
1800 |η| > 1.6/|η| < 1.0 3.0± 0.7 0.88± 0.18 0.64± 0.12 30.± 8. 1.6± 0.3
630 |η| > 1.6/|η| < 1.0 1.3± 0.1 0.75± 0.16 0.48± 0.12 13.± 4. 1.4± 0.3

The gap fraction is extracted from a two-dimensional
fit to the lego plot of nLØ versus nCAL. Table 1 shows
the gap fractions obtained for the four event samples.
Uncertainties are dominated by those on the fit param-
eters. Table 1 shows that the gap fractions at

√
s = 630

GeV are larger than gap fractions at
√
s = 1800 GeV

and that gap fractions for forward jets are larger than
for central jets. Table 1 also lists predicted gap frac-
tions for several possible pomeron structure functions.

We compare the data to Monte Carlo (MC) simu-
lations using the hard diffractive event generator
POMPYT [11]. In POMPYT, a pomeron is emitted
from the proton with a certain probability (called the
flux factor [1]), and has a structure functions s(β),
where β is the fractional momentum of the pomeron
carried by the hard parton. We used the standard
Donnachie-Landshoff flux factor [12] in this analysis
and compare our data to several typical structure func-
tion choices. In each case, the gap fraction is defined
as the cross section for jet events with a rapidity gap
based on POMPYT divided by the jet cross section from
PYTHIA [13]. Many uncertainties, such as the choice of
proton parton densities, cancel in the ratio. The MC
values are corrected for diffractive events that fail the
gap selection criteria.

Monte Carlo gap fractions are shown in Table 1. The
systematic uncertainties are dominated by the differ-
ence in energy scale between data and MC. We observe
that rates for harder gluon structures are far higher
than supported by data, while the quark structure is in
reasonable agreement with the data. The quark struc-
ture, however, has previously been shown to predict an
excessive rate of diffractive W -Bosons [6].

A hard gluonic pomeron is capable of describing
previous measurements [3–6], if combined with a flux
factor that decreases with increasing

√
s [14]. The

ratios of gap fractions shown in the lower half of Ta-
ble 1 provide new information, since the flux factor
cancels for the same

√
s, and dependence on the flux

factor is reduced for different
√
s. The ratios for jets

with |η| > 1.6 to jets with |η| < 1.0 show clear
disagreement between the data and predictions for a
hard-gluon pomeron structure, despite this cancella-
tion. A gluon-dominated pomeron containing both soft
and hard components, combined with a reduced flux
factor, could describe all the data samples.
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Comm. 46, 43 (1987); T. Sjöstrand, CERN-
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QCD Analysis of the Diffractive Structure Functions Measured at HERA and
Factorization Breaking at the Tevatron

C. Royon a

aDAPNIA/SPP, Commissariat à l’Energie Atomique, Saclay,
F-91191 Gif-sur-Yvette Cedex

The 1994 data published by the H1 collaboration are compared with models based on Regge phenomenology. The xIP
dependence of the data can be described in a model based on the exchange of a dominant diffractive (pomeron) trajectory
with additional sub-leading reggeon contributions. The dynamics of the Pomeron structure is studied within the framework
of perturbative QCD and new parton distributions are obtained. These parton distributions will allow a direct test of
factorization breaking at Tevatron.

1. Regge parameterization

The 1994 data are first investigated in the framework
of a Regge phenomenological model [1]. The 1994 data
are subjected to a fit in which a single factorizable
trajectory (IP ) is exchanged such that:

F
� (3)
2 (Q2, β, x � � ) = f � � � � (x � � )F

� �

2 (Q2, β) . (1)

In this parameterization, F
� �

2 can be interpreted as the
structure function of the pomeron [4]. The value of F

� �

2

is treated as a free parameter at each point in β and
Q2. The pomeron flux takes a Regge form with a linear
trajectory α � � (t) = α � � (0) + α

′
� � t, such that

f � � � � (x � � ) =

∫ � min

� cut

e � IP �

x
2 �
IP ( � )−1

� �

dt , (2)

where |t � � � | is the minimum kinematically allowed
value of |t| and t � � � = −1 GeV2 is the limit of the
measurement. The value of α � � (0) is a free parameter
and B � � and α

′
� � are taken from hadron-hadron data

[1]. The fit with a single trajectory does not give a
good description of the data in the same way as it
is observed at Q2 = 0 [2] that secondary trajectories
in addition to the pomeron are required to describe
diffractive ep data.

A much better fit is obtained when both a leading
(IP ) and a sub-leading (IR) trajectory are considered in
the same way as in formula (1), where the values of F

� �

2

and F
� �

2 are treated as free parameters at each point in
β and Q2, α � � (0) and α � � (0) being two free parameters.
The flux factor for the secondary trajectory takes the
same form as equation (2), with B � � , and α

′
� � again

taken from hadron-hadron data [1]. This fit yields to
the following value of α � � (0) = 1.203± 0.020 (stat.) ±
0.013 (syst.)+0 � 030

−0 � 035 (model) [1] and is significantly larger
than values extracted from soft hadronic data (α � � ∼
1.08). The quality of the fit is similar if interference
between the two trajectories is introduced.

2. QCD fits and the structure of the Pomeron

It has been suggested that the Q2 evolution of
the Pomeron structure function may be understood
in terms of parton dynamics from perturbative QCD
where parton densities are evolved according to
DGLAP [3] equations [4,1], using the GRV parame-
terization for F

� �

2 [5].
For the pomeron, a quark flavor singlet distribution

(zS � (z,Q2) = u + ū + d + d̄ + s + s̄) and a gluon
distribution (zG(z,Q2)) are parameterized in terms of

coefficients C
( � )� and C

(
�

)� at Q2
0 = 3 GeV2 such that :

zS (z,Q2 = Q2
0)




�∑
�
=1

C
( � )� · P� (2z − 1)




2

· e a
z−1 (3)

zG(z,Q2 = Q2
0)




�∑
�
=1

C
(

�
)� · P� (2z − 1)




2

· e a
z−1 (4)

where z = x � � � � is the fractional momentum of the
pomeron carried by the struck parton, P � (ζ) is the
j

� �
member in a set of Chebyshev polynomials, which

are chosen such that P1 = 1, P2 = ζ and P �
+1(ζ) =

2ζP � (ζ)− P � −1(ζ). Some details about the fits can be
found in Reference [7].

A sum of n = 3 orthonormal polynomials is used so
that the input distributions are free to adopt a large
range of forms for a given number of parameters. The
exponential factor is needed to ensure a correct con-
vergence close to z=1.

The trajectory intercepts are fixed to α � � = 1.20
and α � � = 0.62. Only data points of H1 with β ≤ 0.65,
M � > 2 GeV and y ≤ 0.45 are included in the fit in
order to avoid large higher twist effects and the region
that may be most strongly affected by a non zero value
of R, the longitudinal to transverse cross-section ratio.

231



3. Results of the QCD fits

The resulting parton densities of the Pomeron are
presented in figure 1. As it was noticed in the 1994
F
�
2 paper [1], we find two possible fits quoted here as

fit 1 and fit 2. Each fit shows a large gluonic content.
The quark contribution is quite similar for both fits,
but the gluon distribution tends to be quite different
at high values of z. This can be easily explained as
no data above z = 0.65 are included in the fits. Thus
there is no constraint from the data at high z. The
quark densities is on the contrary more constrained in
this region with the DGLAP evolution. Both fits show
similar χ2 (the χ2 per degree of freedom is about 1.2)∗.
Adding the 1995 data points into the fits also allows
to get a better constraint on initial parton densities at
Q2

0 = 3 GeV2 compared to the fits performed with 1994
data points alone. For the gluon density presented in
figure 1, we have determined that

� �

� ' 25% for z
below 0.6.

The result of the fit is presented in figure 2 together
with the experimental values for 1994 data points ;
we see on this figure the good agreement of the QCD
prediction and the data points, which supports the va-
lidity of description of the Pomeron in terms of partons
following a QCD dynamics.

We have also tried to extend the QCD fits to lower
Q2 (below 3 GeV2) using the 1995 F

�
2 measurement.

The χ2 of the fit turns out to increase (χ2/ndf = 1.6,
adding 35 lowQ2 points to the 171 points) [8]. This can
be illustrated in figure 2 of Reference [8] where changes
of slopes of scaling violations for Q2 below and above
3 GeV2 can be seen. It may indicate that breaking of
perturbative QCD has already occurred in this region.

The idea would then to use these parton distribu-
tions and to compare with the measurements at Teva-
tron in order to study factorization breaking. The
roman pots which will be available in the D0 experi-
ment at Run II will allow a direct comparison with the
results obtained from the HERA parton distributions.
It will be possible to know where factorization breaking
takes place at Tevatron, e.g. is it at low or high β?

4. Acknowledgments

The results described in the present contribution
come from a fruitful collaboration with H. Jung and
L. Schoeffel.

∗Fit 2 is a bit disfavored compared to fit 1 (its χ2 by degree of
freedom is 1.3 compared to 1.2 for fit 1) and is quite instable:
changing a little the parameters modifies the gluon distribution
at high z.
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Figure 1. Quark flavor singlet (zS, left) and gluon
(zG, right) distributions of the pomeron deduced as a
function of z, the fractional momentum of the pomeron
carried by the struck parton, from the fit on 1994 data
points with Q2 ≥ 4 GeV2. Two possible fits labelled
as fit 1 and fit 2 are found (χ2/ndf = 1.2 for fit 1,and
χ2/ndf = 1.3 for fit 2 with statistical errors only).
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Figure 2. The H1 data points on x � � F
� (3)
2 (1994) are shown with the result of the QCD fit described in the text;

the result of the fit is drawn only in bins included in the minimization procedure.
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Diffractive Heavy Flavor Production at CDF

Andrei Solodsky a

aThe Rockefeller University, 1230 York Avenue, New York, NY 10021

We report results of diffractive production of heavy flavors, charm and beauty, from CDF.

We extended our studies of diffractive processes to
diffractive heavy flavor production, charm and beauty,
to probe directly the gluon content of the pomeron.
Our diffractive beauty [1] production measurement is
based on identifying a high transverse momentum elec-
tron with E � > 9.5 GeV and |η| < 1.1, from the
semi-leptonic b-quark decay, produced in single diffrac-
tion dissociation, p+ p̄→ p/p̄+b(→ e+X ′)+X . Each
event is required to have a jet consisting of at least two
tracks in addition to the electron candidate.

First, we extract a diffractive signal from the ob-
tained event sample and then estimate the b-quark
fraction separately in the diffractive and total event
samples.

As in our diffractive dijet[2] and W [3] analyses,
the diffractive signal is extracted by counting BBC
hits, N � � � , and adjacent forward calorimeter towers,
N � � � , with E > 1.5 GeV. Figure 1(a) shows the corre-
lation between N � � � and N � � � for both the positive
and negative η sides of the detector, i.e. two entries per
event. The (0,0) bin contains 100 events. We evaluate
the non-diffractive content of the (0,0) bin from the
distribution of events along the diagonal of Fig. 1(a),
with N � � � = N � � � , shown in Fig. 1(b) by extrapo-
lating a fit to the data of bins (2,2) to (9,9) to bin (0,0).
This yields 24.4±5.5 non-diffractive background events
in the (0,0) bin.

Figures 1(c) and 1(d) show the electron E � and η
distribution, respectively, for the diffractive (points)
and total (histogram) event samples. In Fig. 1(d), the
sign of η of diffractive events with a gap at positive
η was changed, so that the gap always appears at
negative η. While the E � spectra show no significant
difference, the diffractive η distribution is shifted away
from the gap relative to the symmetric distribution of
the total event sample, in agreement with the single
diffraction event topology.

In addition to events from b-quark decays, the data
contain events from charm decays and background.
The background is mainly due to electrons from resid-
ual photon conversions and to hadrons faking electrons.

We use two methods to extract the fraction of beauty
events in the data. In the first method, we fit the
electron momentum component perpendicular to the

jet axis, p
� � � � �� , which depends on the mass of the par-

ent quark, with the sum of four templates: photon
conversions, fake electrons from hadrons, charm and
beauty. This fit yields a beauty fraction of (42.9±0.4)%
[(38±14)%] for the total [diffractive] event sample. The
second method uses the impact parameter of the elec-
tron track, which is defined as the minimum distance
between the primary vertex and the electron track in
the r−φ plane and depends on both the mass and the
lifetime of the parent quark. A fit to the impact param-
eter distribution using four templates, as above, yields
(47.7± 0.4)% [(38± 14)%] for our two data samples.

The average of the results of both methods yields
73371 ± 485(stat) ± 7774(syst) [44.4 ± 10.2(stat) ±
4.7(syst)] beauty events for the total [diffractive] event
sample. The difference between the results of the two
methods is assigned as systematic uncertainty. After
subtracting the 24% non-diffractive background esti-
mated from the fit in Fig. 1(b), there remain 33 ±
10(stat)±5(syst) diffractive beauty events. Correcting
the diffractive event yield for single-vertex selection cut
efficiency (0.26± 0.01), and for the detector live-time
acceptance (0.77± 0.07) due to noise or beam associ-
ated background, we obtain 165± 50(stat)± 29(syst)
diffractive beauty events.

The diffractive to total b-quark production ratio ob-
tained from the above numbers is R


 � �
��� = [0.23 ±

0.07(stat)±0.05(syst)]%. The rapidity gap acceptance
for events generated using POMPYT Monte Carlo with
a flat pomeron structure, which is favored by HERA
measurements [4,5], and a gluon to quark ratio of
0.7±0.2, as reported in ref. 3, is found to be 0.37±0.02.
Dividing R


 � �
�̄�� by this value yields a diffractive to total

production ratio of

R �̄�� = [0.62± 0.19(stat)± 0.14(syst)]% (ξ < 0.1).

POMPYT with the standard pomeron flux and a
flat (hard) pomeron structure consisting of purely
gluons or quarks yields R �̄ � of 10.4%(11.6%) and
0.92%(1.02%), respectively. The ratio D of the mea-
sured R �̄�� fraction to that predicted by POMPYT de-
pends on the gluon fraction f 
 of the pomeron. This
dependence is shown in Fig. 2, where D is plotted as a
function of f 
 along with published results from ZEUS
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and CDF measurements [2,3]. For each measurement
the two curves show the 1σ bounds. The black cross
and shaded ellipse represent the best fit and 1σ con-
tour of a least square two-parameter fit to the three
CDF results. The fit yielded D � � � = 0.19 ± 0.04
and f

� � �
 = 0.54+0 � 16
−0 � 14, in agreement with the results

we obtained from the W and dijet rates, namely D =
0.18± 0.04 and f 
 = 0.7± 0.2 [2]. The value of D � � �
is significantly smaller than the ZEUS result. The dis-
crepancy between the HERA and Tevatron D-values
represents a breakdown of factorization. The observed
discrepancy is in general agreement with predictions
based on the renormalized pomeron flux model [6].

We also searched for diffractive J/ψ production in
a sample of central (|η| < 1.1) dimuons. For J/ψ
reconstruction we required a pair of opposite charge
muons with p � > 2 GeV/c and invariant mass close
to the J/ψ mass. The technique we used to extract
the diffractive signal is identical to that used in our
previous studies. Preliminary results of this analysis,
before correcting for the gap acceptance A, give a ratio
of diffractive to non-diffractive J/ψ production of

R � � � ×A = [0.36± 0.07]%.

In spite of the fact that all diffractive processes stu-
died at CDF are differently sensitive to the quark and
gluon content of the pomeron, the obtained ratios of
diffractive to non-diffractive production are all of the
same order of magnitude, ∼ 1%. This indicates that
the structure of the pomeron probed in single diffrac-
tion events is not very different from the structure of
the proton.
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Figure 1. (a) Beam-beam counter multiplicity, N � � � ,
versus forward calorimeter tower multiplicity, N � � � ;
(b) multiplicity distribution along the diagonal with
N � � � = N � � � in the plot in (a); (c) electron p � and
(d) pseudorapidity for the diffractive (points) and total
(histogram) event samples.

GLUON FRACTION IN POMERON

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
 (

M
E

A
S

U
R

E
D

 / 
P

R
E

D
IC

T
E

D
)

ZEUS

CDF-DIJET

CDF-WCDF-b

Figure 2. The ratio D of measured to predicted dif-
fractive rates as a function of the gluon content of the
pomeron.

235



Diffractively Produced Charm Final States in pp Interactions at 800 GeV/c

M.H.L.S. Wang a � � , M.C. Berisso
�
, D.C. Christian b, J. Félix c, A. Gara d, E. Gottschalk

�
, G. Gutiérrez

�
,

E.P. Hartouni e, B.C. Knapp
�

, M.N. Kreisler
� � � , S. Lee

�
, K. Markianos

�
, G. Moreno

�
, M.A. Reyes

�
, M. Sosa

�
,

A. Wehmann
�
, D. Wesson

�

aUniversity of Massachusetts, Amherst, Massachusetts 01003, USA

bFermilab, Batavia, Illinois 60510, USA

cUniversidad de Guanajuato, León, Guanajuato, México

dColumbia University, Nevis Laboratories, Irvington, New York 10533, USA

eLawrence Livermore National Laboratory, Livermore, California 94551, USA

We report the observation of charm final states produced by the diffractive dissociation reaction pp→ pX at a c.m. energy
of
√
s = 40 GeV. Signals are observed for the decay modes D∗+ → D0(K−π+)π+ and D∗− → D0(K+π−)π− . Our results

are based on analysis of data representing over 50% of the 5.5 billion events acquired by experiment E690 in the Fermilab
fixed target run of 1991.

1. Experiment

Experiment E690 was a fixed target experiment that
investigated diffractive pp interactions using an 800
GeV/c proton beam incident on a fixed liquid hydrogen
target. The E690 detector was made up of a beam
spectrometer system and a multi-particle spectrome-
ter. The beam spectrometer system consisted of two
separate spectrometers– an incoming beam spectrom-
eter which detected the incident beam proton and an
outgoing beam spectrometer which measured the for-
ward or scattered beam proton. Together they al-
lowed measurement of the momentum difference be-
tween the beam proton and the fast, outgoing proton.
The multi-particle spectrometer, on the other hand,
which was made up of 6 drift chambers, a time-of-flight
(TOF) system and a Cerenkov counter for particle
identification, measured the particles produced by the
interaction of the beam proton in the LH2 target.

During the run, events were written to tape when
they met the following requirements:

1. An incident beam proton in the incoming beam
spectrometer.

2. A fast proton in the outgoing beam spectrometer.

3. At least one extra charged track in the main spec-
trometer.

By the end of the fixed target run in 1991, E690 had
acquired about 5.5 billion events meeting these require-
ments. The number of events used for this analysis was
about 2.8 billion events, representing over half of the
entire data sample.

2. Charm selection

In the search for diffractive charm, the charm decay
mode D∗ → D0(Kπ)π was used due to its low Q value
(where Q = M(Kππ) −M(Kπ) −M(π)) which pro-
vided a valuable signature for reducing combinatorial
backgrounds. The following criteria were used to select
charm candidates from the E690 data sample:

1. At least 3 tracks with the appropriate charges to
form a Kππ invariant mass combination.

2. Track assigned as the K from the D0 decay must
have Cerenkov identification consistent with aK.

3. Track assigned as the π from the D0 decay must
have Cerenkov identification consistent with a π.

4. 1.810 GeV/c2 < M(Kππ) < 2.210 GeV/c2.

5. |Q− .00583 GeV/c2| < .0005 GeV/c2.

6. Only for the D∗+: TOF identification for slow π
from the D∗ decay consistent with a π.

3. Results

Applying all of these cuts to the 2.8 billion events
used for this analysis resulted in 446 events for the
D∗+ and 4,916 events (without the TOF requirement
for the slow π) for the the D∗−. Fitting a Gaussian
plus a linear background to the invariant Kππ mass
distributions of the events meeting these requirements
provided an estimate of 45 events for the D∗+ and 157
events for the D∗−. To select diffractive events, the

236



K-π+π+ Invariant Mass

  30.14    /    35
P1   13.22
P2   2.010
P3  0.1166E-01
P4   52.35
P5  -23.16

Gev/c2

C
om

bi
na

tio
ns

/ 1
0 

M
eV

/c
2 signal/background = 39/41

K+π-π- Invariant Mass

  34.44    /    35
P1   42.61
P2   2.010
P3  0.1335E-01
P4   487.4
P5  -206.2

Gev/c2

C
om

bi
na

tio
ns

/ 1
0 

M
eV

/c
2 signal/background = 143/585

0

5

10

15

20

1.9 2 2.1 2.2
0

50

100

1.9 2 2.1 2.2

Figure 1. Invariant Kππ mass distributions for D∗+ and D∗− events meeting the coherence condition, x � > 0.85,
fitted to a Gaussian plus a linear background

coherence condition [1] was imposed requiring the x �
of the fast, outgoing proton to be greater than 0.85.
With this additonal requirement, fits to the Kππ mass
distributions shown in Figure 1 yielded 39 events for
the D∗+ and 143 events for the D∗−. A plot of the
rapidity y (where y = 1

2 ln(
�

+
�
L� − � L )) is shown in Figure 2

for the D∗+, the scattered proton, and the Y system
where Y represents all the particles in the X system
excluding the D∗ in a single diffractive reaction of the
type pp → p � � � � X(D∗Y ). This plot shows a rapidity
gap of nearly 5 units between the D∗ and the fast,
outgoing proton p � � � � which is characteristic of a single
diffractive interaction.

4. Conclusion

In conclusion, after analyzing over half of the entire
E690 data sample, we observe signals of 39 events in
the D∗+ → D0(K−π+)π+ channel and 143 events in
the D∗− → D0(K+π−)π− channel meeting the coher-
ence condition of x � > 0.85 for the fast, outgoing
proton. To our knowledge this is the first observa-
tion of open charm production in single diffractive pp
interactions. A search conducted by a previous exper-
iment, FNAL E653, found no evidence for diffractively
produced charm in p− Si interactions [2] resulting in
an upper limit of σ � � � � (cc) < 26 µb for p − Si. If we
assume that the dependence of the cross section σ on
the atomic weight A goes like σ ∝ A2

�
3, this upper

limit translates to σ � � � � (cc) < 2.8 µb in the case of pp
interactions at 800 GeV/c. Preliminary cross section
estimates based on the E690 results using some crude
assumptions and models yielded figures consistent with
this upper limit.
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Figure 2. Rapidity plot of the D∗, Y system, and p � � � �

for D∗+ → D0(K−π+)π+ events
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Cost of Survival for Large Rapidity Gaps
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In this note we report on calculations of the survival probability of the large rapidity gap (LRG) processes and its energy
behaviour.

1. INTRODUCTION

In this note we consider the reaction

p+ p −→ (1)

X1 +jet1(y1, p1 � � � µ)+[LRG]+jet2(p2 � � � µ)+X2 ,

where LRG denotes the large rapidity gap between
produced particles and X corresponds to a system of
hadrons with masses much smaller than the total en-
ergy.

The story of LRG processes started from Refs. [1–
3], where it was noticed that these processes give us
a unique way to measure high energy asymptotic at
short distances. Indeed, at first sight the experimental
observable

f 
 � � =
σ( dijet production with LRG )

σ � � � � � � � � � ( dijet production )
(2)

is directly related to the so called “hard” Pomeron
exchange. However, this is not the case and the factor
( survival probability 〈| S |2〉 appears between the
“hard” Pomeron exchange and the experimental ob-
servable.

fgap=                  = <S2>σ(LRG)
σ(INCL)

Actually, this factor 〈| S |2〉 is a product of two
survival probabilities

〈| S |2〉 = (3)

〈| S �
� � � � � � � � � � � � 
 (∆y = |y1−y2| |2〉×〈| S � � � � � � � � � � (s) |2〉

which have different meanings.

1. 〈| S �
� � � � � � � � � � � � 
 |2〉 is probability that the LRG

will not be filled by emission of bremsstrahlung
gluons from partons, taking part in the “hard”
interaction ( see fig 1-a). This factor is certainly
important and has been calculated in pQCD in
Refs. [4,5,10]. We are not going to discuss it
here;

2. 〈| S � � � � � � � � � | |2〉 is related to probability that ev-
ery parton with x � > x1 will have no inelastic
interaction with any parton with x < x2 ( see
fig. 1-b). The situation with our knowledge of
this survival probability is the main goal of this
paper.

2. Q & A

Q: Have we developed a theory for 〈| S � � � � � � � ��� � |2〉 ?
A: No, there are only models on the market (see

Refs. [6–10]).
Q: Can we give a reliable estimates for the value of
〈| S � � � � � � � ��� |2〉 ?

A: No, we have only rough estimates based on the
Eikonal - type models.

Q: Can we give a reliable estimates for the energy
behaviour of 〈| S � � � � � � � ��� |2〉 ?

A: No, but we understood that 〈| S � � � � � � � � � |2〉 could
steeply decreases with energy.

Q: Why are you talking about 〈| S � � � � � � � ��� |2〉 if you
can do nothing ?

A: Because dealing with models we learned what
questions we should ask experimentalists to improve
our estimate and what problems we need to solve the-
oretically to provide reliable estimates.

3. EIKONAL-TYPE MODELS

3.1. Eikonal model
In eikonal model we assumed that the correct degrees

of freedom at high energies are hadrons, and, there-
fore, the scattering amplitude is diagonal in the hadron
basis. Practically, it means [6] that we assume that
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Figure 1. Two sources of survival probability: (a) emis-
sion of gluons from the partons taking parts in “hard”
interaction and (b) emission due to “soft” interaction
of spectator quarks ( partons ).

the ratio σ � � /σ
� �

‘ � 1. In this model the unitarity
constraint looks simple, namely,

Ima � � (s, b) =| a � � (s, b) |2 +G � � (s, b) , (4)

which has solution in terms of arbitrary real function
- opacity Ω(s, b):

a � � = i
[

1 − e−
Ω(s,b)

2

]
; (5)

G � � (s, b) = 1− e−Ω( � �
�
) ; (6)

Ω(s, b) = ν(s) e
− b2

R2(s) ; (7)

where Eq. (7) is Pomeron-like parameterization that
has been used for numerical estimates. The formula

 ν

 a

3%

 5%

7%

10%

13%

( W = 1800 GeV )

( W = 546 GeV )

Figure 2. Survival probability in the eikonal model.

for survival probability looks as [3] [6]

<| S |2>=

∫
d2be

− b2

R2
H e−Ω( � �

�
)

∫
d2be

− b2

R2
H

(8)

where R2
� is radius for the hard processes. In Ref. [6]

the values of R2
� and R2(s) were discussed in details.

The main observation is that the experimental value of
the ration σ

� �
/σ � � � depends only on the value of ν. This

gives us a way to find the value of ν directly from the
experimental data. The result is plotted in Fig.2 and
shows both the small value of the survival probability
and its sharp energy dependence.

3.2. Three channel model.
The assumption that σ � � /σ

� �
‘ � 1 is in contra-

diction with the experimental data, therefore, it is
interesting to generalize the eikonal model to include
processes of the diffractive dissociation. It was done
in Ref.[7], where the rich diffractive final state was de-
scribed by one wave function orthogonal to the hadron

Ψ � � �
� � � = αΨ1 + βΨ2 ; Ψ � = −βΨ1 + αΨ2 , (9)

where α2 + β2 = 1. The scattering amplitude is diag-
onal with respect functions Ψ1 � 2 and we used Eq. (5)-
Eq. (7) -type parameterization to describe it. The
result of our calculation is given in Fig.3.
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4. CONCLUSIONS

The experimentally observed value of the survival
probability appear naturally in these two models.

The parameters that have been used are in agree-
ment with the more detailed fit of the experimental
data.

It turns out that the scale of 〈| S � � � � � � � ��� |2〉 is given
by ratios R � � =

�

el
�
tot

, R � � =
�
SD

�
tot

and R � � =
�
DD

�
tot

, but not the ratio R � =
�

el + �
SD + �

DD
�
tot

,
which does not show any energy dependence.

The further measurement all ratios mentioned above
will specify the model and will provide a better predic-
tions for the survival probability. For example, new
data on R � � [11] will specify the value of β which will
lead to more definite predictions for 〈| S � � � � � � � � � |2〉
(see Fig. 3).
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Figure 3. The value of survival probability (Fig.3-a),
its energy dependence (Fig.3-b) and prediction for the
ratio of double diffraction dissociation to the total cross
section (Fig.3-c) versus β.
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Is BFKL ruled out by the Tevatron Gaps between Jets Data?

B.E. Cox, J.R. Forshawa and L. Lönnbladb
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We have performed a detailed phenomenological investigation of the hard colour singlet exchange process observed at the
Tevatron in events that have a large rapidity gap between outgoing jets. We include the effects of multiple interactions to
obtain a prediction for the gap survival factor. Comparing the data on the fraction of gap events with the prediction from
BFKL pomeron exchange we find agreement provided that a constant value of αs is used in the BFKL calculation. Moreover,
the value of αs is in line with that extracted from measurements made at HERA.

1. Introduction

Events with large rapidity gaps in the hadronic final
state and a large momentum transfer across the gap,
characterized by the presence of a hard jet on each side
of the gap, have been observed in both pp̄ collisions
at the Tevatron [1–4] and in γp collisions at HERA
[5,6]. Such events are unexpected in standard Regge
phenomenology since the cross section is predicted to
fall as ∼ s−

� | � |, where α ' 0.25 GeV−2, whilst events
with |t| > 1000 GeV2 are routinely observed at the
Tevatron. Clearly some other explanation must be
sought. Uniquely in diffractive physics, high-t events
are amenable to the use of perturbative QCD since
the gap producing mechanism is squeezed to small
distances [7]. Such calculations have been carried out
within the leading logarithmic approximation of BFKL
[8] by Mueller and Tang [9], and it is the aim of this
talk to present comparisons of these calculations with
the latest data from the Tevatron. The situation is
greatly complicated by the possibility that rapidity
gaps formed by whatever process can be destroyed
by multiple interactions between spectator partons in
the colliding hadrons. Detailed comparisons made and
conclusions drawn from any dynamic model of high-t
rapidity gap formation must therefore include a careful
treatment of such physics. In this analysis, we use a
model implemented in the PYTHIA Monte Carlo gen-
erator to simulate the effects of multi-parton interac-
tions.

2. DØ data versus the BFKL pomeron

The analysis presented here was stimulated to some
extent by the recent DØ measurements [2] of the frac-
tion of dijet events containing a large rapidity gap as a
function of E �

2, the E � of the second hardest jet, and
the rapidity difference between the two leading jets,
∆η. The DØ results are shown in figure 1. Jets are
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Figure 1. DØ data compared with a BFKL calculation.
Plot from [2].

found using a cone algorithm [10,11] with cone radius
0.7 and the OVLIM parameter set to 0.5. The inclusive
dijet sample is defined by the following cuts:

• |η1|, |η2| > 1.9, i.e. jets are forward or backward

• η1η2 < 0, i.e. opposite side jets

• E �
2 > 15 GeV

• ∆η > 4, i.e. jets are far apart in rapidity.

The sub-sample of gap events is obtained by employing
the further cut that there be no particles emitted in
the central region |η| < 1 with energy greater than
300 MeV. The BFKL curve is clearly ruled out by
the data. The DØ BFKL curves are based on the
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calculation of Mueller and Tang implemented into the
standard HERWIG 5.9 release [12,22]. In particular, the
asymptotic cross-section of [9] is used; in the limit
y ≡ ∆η � 1,

dσ(qq → qq)

dt
≈ (C � α � )4 2π3

t2
exp(2ω0y)

(7α � C � ζ(3)y)3
(1)

where ω0 = ω(0) = C � (4 ln 2/π)α � . The α4
� in the

pre-factor runs with −t according to the two-loop beta
function, ω0 = 0.3 and the α � in the denominator =
0.25. The falling of the BFKL curve with increasing
E �

2 is driven by the running of the coupling in the
pre-factor since the gap fraction goes like ∼ α4

� /α2
� .

3. Key issues

In this analysis, we choose somewhat different pa-
rameters. We also use the full Mueller Tang calcula-
tion without the asymptotic approximation. This is
also available in HERWIG 5.9 [23] and is available from
the authors. We choose to fix α � = 0.17. To leading
logarithmic accuracy α � is simply an unknown param-
eter. Higher order corrections will indeed cause the
coupling to run, however it is not clear how this should
be done in a consistent way. In this paper we restrict
ourselves to the leading logarithmic approximation and
treat the coupling as a free parameter. Moreover, we
are guided by recent HERA data on the double dis-
sociation process [13] which can be described by the
leading logarithmic BFKL formalism with α � = 0.17.
We also note that a fixed coupling constant was needed
in order to explain the high-t data on pp̄ elastic scatter-
ing via three gluon exchange [14]. Furthermore, NLO
corrections suggest a fixed value for the leading eigen-
value of the BFKL equation, ω(0), [15] which in turn
suggests the use of a fixed coupling in the LLA kernel.

4. Underlying events and gap survival

As mentioned above, it is critical in any estimate of
gap formation rates to take into account the possibil-
ity that gaps can be destroyed by secondary scatters,
which may be perturbative or non-perturbative, be-
tween spectator partons in the colliding hadrons. Sev-
eral models are available [16–18], but it would be fair
to say that all are as yet in a early stage of development
and are not tuned to pp̄ data. We choose the model
as implemented in PYTHIA 6.127 [17]. Here the prob-
ability to have several parton-parton interactions in
the same collision is modeled using perturbative QCD.
The probability for additional interactions is not fixed
but varies according to an impact-parameter picture,
where central collisions are more likely to have multiple
interactions. The partons in the proton are assumed

pythia mi0

herwig nlo αs

pythia mi4

bfkl fixed αs

Jet δη

1/
N

 d
E
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2/

dδ
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1
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-3 -2 -1 0 1 2 3

Figure 2. Jet η profiles

to be distributed according to a double-Gaussian as
described in [19,17]. There are several parameters
in this model and we have used the default setting
for each.∗ Our strategy is to generate high-t photon
exchange events (hard BFKL pomeron exchange has
not been implemented in PYTHIA ) with and without
multiple interactions, and take the percentage change
in the number of rapidity gap events, defined as in the
DØ analysis, as the gap survival factor. We find that
gap survival in this model is to first order independent
of E

� � �� and ∆η, i.e. it can be treated as a multiplicative
factor. The gap survival factor S does vary strongly
with centre of mass energy, which is not unexpected
since the number density of partons in the colliding
hadrons, and therefore the probability of having a sec-
ondary scatter, increases with energy. In summary, we
find S(1800 GeV) = 22%, S(630 GeV) = 35%. Full
details can be found in [20].

A key point to notice is the interplay between gap
survival and underlying event : multiple interactions
also give rise to the so-called jet pedestal and underly-
ing event effects. This means that the jets measured in
hadron-hadron collisions cannot be compared directly
to e.g. predictions from fixed order perturbation the-
ory. In Figure 2 we show jet profiles obtained from
PYTHIA with (mi4) and without (mi0) multiple inter-

∗Setting the switch MSTP(82)=4 in PYTHIA , with everything else
default, will give the model as we have used it.
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actions (and with |δφ| < 0.7). The proton remnant
is at δη > 0. It is clear that multiple interactions
introduce a jet pedestal of more than 1 GeV of E �

per unit rapidity. For comparison, also shown is the
jet pedestal from HERWIG . We note that HERWIG

predicts a greater amount of energy outside the jet cone
than PYTHIA without multiple interactions. Again, a
full discussion of these differences can be found in [20].

In the DØ jet measurements the excess E � from the
underlying event is taken into account by correcting
the jet E � using minimum bias data. In particular,
the correction is determined by looking at the E � flow
in regions away from the jets. The correction is made
by subtracting approximately 1 GeV from the E � of
each reconstructed jet [21]. In particular, in the gap
fraction measurement, this subtraction is performed
for all jets, including those in gap events. But, re-
quiring a large rapidity gap also selects events without
multiple interactions, where the jet pedestal is absent,
or at least much smaller; multiple interactions destroy
gaps, and therefore a gap event cannot have a multiple
interaction. Since jet cross sections fall faster than
1/E4� , such a correction can decrease the measured jet
rate by up to 30% for 18 GeV jets. Our contention
therefore is that the jets in gap events should not be
corrected for underlying event, and therefore the gap
fraction should rise less steeply with E � than in figure
1.

5. Gap fractions

Figures 3 and 4 show our results for the gap fractions
as functions of ∆η and E �

2 respectively. The stars are
the HERWIG BFKL simulation with fixed α � = 0.17,
with 1 GeV subtracted from each jet in order to
simulate the DØ underlying event correction and the
open circles are the DØ data. The gap fractions are
constructed using a standard PYTHIA QCD simulation
without colour singlet exchange, and without multi-
ple interactions. We have used both CTEQ2M and
CTEQ3M parton distribution functions [24,25], and
have found the differences to be small. Our philosophy
is that the DØ data have been corrected for the effects
of multiple interactions in non-singlet exchange events,
and we should therefore generate none, whereas we
must undo the erroneous correction to the colour sin-
glet sample. The combination of fixing α � and correct-
ing the gap events erroneously for multiple interactions
produces the rise of the gap fraction at low jet E � . The
solid circles show the gap fraction using a running α �

in the BFKL sample. Even with the underlying event
correction, this sample is unable to fit the data. The
overall normalisation of the simulated gap fractions is
multiplied by a factor of 0.6. That this is a reasonable
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Figure 3. Gap fraction as a function of ∆η compared
to the DØ data

thing to do can be appreciated once it is realized that
our results have not been fitted to the data and that the
overall normalization is acutely sensitive to the magni-
tude of α � . Furthermore, the overall normalization of
the BFKL cross-section is uncertain since, within the
leading logarithmic approximation, one does not know
a priori the scale at which to evaluate the leading log-
arithms. Given these points, we conclude that the DØ
data are in agreement with the leading order BFKL
result. Figure 5 shows our result for the gap fraction as
a function of ∆η ≡ 2η∗ compared to the CDF data [4].
Note that CDF do not attempt to correct their jets to
include the effect of an underlying event. We therefore
generate the PYTHIA non-singlet sample with multiple
interactions (labelled mi4), and do not perform the 1
GeV / jet subtraction from the HERWIG BFKL sample.
In this plot, our theory points are obtained using a
renormalization factor of unity (compared to 0.6 in the
DØ case). We then find reasonable agreement with
the data except at the larger values of η∗ where we are
quite unable to explain a fall in the η∗ distribution.
Recall however that DØ do not see a fall at large ∆η.
Further clarification of the situation will require an
increase in statistics.

We have also computed the ratio of the gap frac-
tions at 630 GeV and 1800 GeV. We find that, even
including gap survival effects, R(630/1800)∼ 1 at the
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parton level. When hadronization effects are taken
into account, however, we find that the ratio rises sig-
nificantly to ∼ 3, with a strong dependence on ∆η.
DØ find R(630/1800) = 3.4 ± 1.2 [2], and CDF find
R(630/1800) = 2.4 ± 0.9. In the DØ case the effect
may be attributed to the different parton x ranges of
the 630 GeV and 1800 GeV measurements (although
we note that the CDF result is calculated at fixed
x). The restriction x < 1 forces the gap and non-gap
cross-sections to fall to zero at some maximum ∆η,
∆ηmax. Now, the colour connection that exists be-
tween the jets in the non-gap sample drags the jets
closer together in rapidity. This has a small effect away
from ∆ηmax (since the ∆η spectrum is roughly flat)
however as ∆η → ∆ηmax it leads to a more rapid van-
ishing of the non-gap cross-section than occurs in the
gap cross-section. This effect, combined with the fact
that ∆ηmax(630 GeV) < ∆ηmax(1800 GeV), leads to
an enhancement of the measured 630 GeV gap fraction
at large ∆η at the hadron level, and hence the larger
value of R(630/1800).

6. Conclusions and future possibilities

We have explicitly demonstrated that the Tevatron
data on the gaps-between-jets process at both 630 GeV
and 1800 GeV are in broad agreement with the predic-
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Figure 5. Gap fraction compared to the CDF data

tions obtained using the leading order BFKL formal-
ism. However, we are not able to explain the behaviour
of the CDF gap fraction at large ∆η. Agreement is
obtained using the same fixed value of α � = 0.17 as
was used to explain the recent HERA data on high-t
double diffraction dissociation.

Care must be taken in the interpretation of our find-
ings, however. The BFKL formalism itself suffers from
being evaluated only to leading logarithmic accuracy.
The uncertainties of the overall normalization which
follow will not be removed until an understanding of
BFKL dynamics at non-zero t beyond the leading log-
arithmic approximation in achieved.

An understanding of the effects of underlying event
and its impact on gap survival is crucial to the inter-
pretation of the gaps between jets data, and indeed
diffractive data as a whole.

As pointed out in [9,20], the gap fraction defined in
terms of a region void of hadronic activity is not strictly
infrared safe. A better observable would be to define a
gap to be a region that does not contain any jets with
transverse momenta above some perturbatively large
scale. Work along these lines has also been performed
in [26].

One major disadvantage of the gaps between jets
process arises from the need to measure both jets since
this limits the reach in rapidity. In [27], it was sug-
gested to focus instead on the double dissociation sam-
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ple (the gaps between jets events form a subsample
of this generally much larger sample). By dropping
the requirement to observe jets one not only gains in
rapidity reach and statistics but also from the reduced
systematics associated with this more inclusive observ-
able.
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Interjet Energy and Color Flow
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Rapidity gap events are conventionally defined by requiring no particle production in a gap region. In the case of dijet
events, the distribution of energy, Egap, that flows into the interjet region is calculable in perturbative QCD nearly down to
Egap = 0, and sheds light on the role of color exchange in hard scattering. Distributions are calculable for Egap as a function
of scattering angle, momentum transfer and gap width. The concept of a hard color singlet exchange is clarified.

1. GAPS AND COLOR FLOW

A compelling heuristic principle suggests that the
exchange of gluons in a color singlet state produces
little radiation even when the scattering produces jets
at high p � [1]. The correspondence has such currency
that dijet gap events are routinely termed “color singlet
exchange”. This insight, however, has been difficult to
implement in perturbative terms. After all, gluons of
any energy carry octet color charge, so that there is
no unique way of defining color exchange in a finite
amount of time [2]. On the other hand, it takes a very
short time to radiate a hard gluon, and once radiated,
it cannot be reabsorbed on the basis of soft color rear-
rangements at very long times.

1.1. Two-gluon vs. Soft Color Models
The simplest short-distance model for dijet gaps

is based on two-gluon exchange [1]. In a two-gluon
model, the gap is usually filled by spectator interac-
tions, up to a “survival probability”, P � , which may
be estimated [1,3] from low-p � diffractive scattering to
be of order one tenth. Denoting the probability for
hard color-singlet exchange as f1, the fraction of gap
events becomes

fgap = f1 P � . (1)

If we estimate f1 ∼ O(α � (p � )/π) ∼ 0.1, we predict gap
events at the one percent level, and this is what is seen
experimentally [4–7]. This analysis would lead us to
expect more gap events from gluon-gluon than quark-
quark scattering, because of the larger color factors
in exchange graphs between gluons. This expectation
was tested by comparing 630 and 1800 GeV data from
the Tevatron, because at fixed p � the role of gluon-
gluon scattering increases with the overall center-of-
mass energy. The proportion of gap events, however,
decreased, rather than increased, with the energy.

In the soft color approach [8], normally presented as
an alternative to the two-gluon model, the underlying
hard scattering is treated at lowest order, which for gap

events is primarily single-gluon, color octet exchange.
The gap probability is determined by counting possible
color exchanges, assuming all to be equally likely, up
to an overall survival factor (rather larger than 1/10).
Because gluons have more color states than quarks,
they are correspondingly less likely to produce gap
events. The soft color model then naturally leads to
fewer gap events as the energy, and hence the role of
gluons, increases.

1.2. Energy Flow
A third approach is a perturbative QCD formal-

ism for rapidity gaps, made possible by redefining
gaps in terms of an energy flow, Egap, rather than
particle multiplicity [9]. The resulting cross sections
can be treated via standard factorization theorems.
In this formulation, if Egap � ΛQCD the cross sec-
tion is perturbatively calculable. In addition, when
p � � Egap � ΛQCD, the gap cross sections have two
perturbative scales, and logarithms in their ratio can
be resummed by renormalization group methods.

Resummation in ln(Egap/p � ) allows us to probe
color flow at short distances, and to generalize the
concept of hard color singlet exchange.

The dijet cross section at measured Egap � ΛQCD

falls into the class of inclusive jet cross sections that
can be written in factorized form:

dσ

dEgap d cos θ̂
(∆y) =

∑
�
A �

�
B

φ �
A
� � ⊗ φ �

B
�
¯�

⊗
∑

�
C �

�
D

dσ̂(f)

dEgap d cos θ̂
(∆y) , (2)

with the φ � �	� parton distributions, evaluated at the
scale of the dijet momentum transfer. The partonic
cross section dσ̂(f)/dEgap d cos θ̂ is a hard scattering
function, starting with the Born cross section at lowest
order (cf. the soft color model). The index f denotes
the partonic hard scattering f � + f � → f � + f � .
The cross section depends on the dijet pair rapid-
ity y � � , the partonic center-of-mass (c.m.) energy
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squared ŝ, the partonic c.m. scattering angle θ̂, with

− ˆ�
2

(
1− cos θ̂

)
= t̂, and ∆y, the gap size as a rapidity

interval.

2. INTERJET ENERGY DISTRIBUTION

To leading logarithm in Egap/
√
−t̂, the gap energy

dependence is of the form

dσ̂(f)

dEgap d cos θ̂
(∆y) =

∑
� �

σ̃ � � (θ̂)

× E
� �

Egap

[
ln

(
Egap

Λ

)] �
γβ−1

[
ln

(√
−t̂
Λ

)]− � γβ
. (3)

In this expression, β and γ label the color exchange at
short distances, contained in σ̄, in a color tensor basis
that diagonalizes a perturbative anomalous dimension
matrix. The exponents E � � are given in terms of the

eigenvalues, λ � = (α � /π)λ
(1)
� , of this matrix by

E � �
(
θ̂,∆y

)
=

2

β0

[
λ(1)∗� ,+λ̂(1)

�

]
, (4)

with β0 = 11N � /3 − 2n � /3. The color exchange with
smallest eigenvalue thus dominates the behavior of the
cross section in the limit Egap/p � → 0.

The concept of a dominant eigenvalue generalizes
conventional hard singlet exchange, because the eigen-
vectors of the anomalous dimension matrix are linear
combinations of elements in the basis of t-channel color
transfers. The coefficients depend, in general, on the
jet scattering angle. Eq. (3) thus leads to a detailed
set of predictions for dijet data with measured interjet
energy flow.

Explicit anomalous dimension eigenvalues λ � for
quark and gluon processes may be found in Ref. [10].
The overlap of the dominant eigenvector with hard
color singlet exchange grows in the direction of for-
ward scattering for all partonic processes, so that in
the Regge limit, −t̂/ŝ → 0, t̂ fixed, the dominant
color exchange becomes purely color singlet [11]. In
addition, the eigenvalues for gluon-gluon scattering are
larger than those for processes involving quarks. This
makes it harder for gluon-gluon hard scattering to pro-
duce rapidity gaps, for much the same reasons as in
the soft color model: the size of the eigenvalue λ � is
related to the number of color states available. At low
interjet energy, however, the smallest eigenvalue for
quark-antiquark scattering is actually less than unity
in absolute value, and produces a small upturn in the
interjet energy distribution in predictions based on Eq.
(3) [9]. This is the “hard singlet exchange” observed
by CDF and D0 [4,5]. Gap events defined by vanishing
particle multiplicity in the interjet region are counted

in this excess. The perturbative predictions for such
events must be diluted, as usual, by corrections as-
sociated with spectator interactions, which, according
to the factorization formalism, are suppressed only by
powers of ΛQCD/Egap, and which therefore become
important for small Egap. We have in Eqs. (2)-(4),
however, a set of predictions for the full range of Egap.

3. SUMMARY

Energy flow analysis makes possible a quantitative
study of radiation in interjet regions, and gives a per-
turbative meaning to short-distance color exchange,
generalizing both the two-gluon and soft color models.
On the basis of this analysis, gaps in dijet events come
from a compound structure, predominantly, but not
purely, singlet in the hard scattering [9,10]. Many
qualitative results, including the relative suppression
of dijet gaps for gluon-gluon scattering, are consistent
with the successes of the soft color model. The per-
turbative analysis offers a systematic set of differential
predictions for energy flow, as a function of momentum
transfer, flavor and interjet rapidity interval.
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We show that soft color rearrangement of final states can account for the appearance of rapidity gaps between jets. In the
color evaporation model the probability to form a gap is simply determined by the color multiplicity of the final state. This
model has no free parameters and reproduces all data obtained by the ZEUS, H1, DØ, and CDF collaborations.

1. Introduction

The inclusion of soft color interactions between the
dynamical partons leads to a parameter–free calcula-
tion of the formation rate of rapidity gaps. The idea is
extremely simple. A rapidity gap occurs whenever final
state partons form color singlet clusters separated in
rapidity. As the partons propagate within the hadronic
medium, they exchange soft gluons which modify the
string configuration. The probability to form a rapid-
ity gap is then determined by the color multiplicity of
the final states formed by the dynamical partons, and
nothing else. All data obtained by ZEUS, H1, DØ,
and CDF collaborations are reproduced when this color
structure of the interactions is superimposed on the
usual perturbative QCD calculation for the production
of the hard jets. We pointed out [1] that this soft color
mechanism is identical to the color evaporation mech-
anism [2] for computing the production rates of heavy
quark pairs produced in color singlet onium states, like
J/ψ. Moreover, we also suggested that the soft color
model could provide a description for the production
of rapidity gaps in hadronic collisions [1].

The success of the color evaporation model to ex-
plain the data on quarkonium production is unques-
tionable [3]. We showed [5] that the straightforward
application of the color evaporation approach to the
string picture of QCD readily explains the formation of
rapidity gaps between jets at the Tevatron and HERA
colliders.

2. Color Counting Rules

In the color evaporation scheme for calculating
quarkonium production, it is assumed that all color
configurations of the quark pair occur with equal prob-
ability. We propose that the same color counting ap-
plies to the final state partons in high E � jet produc-
tion. In complete analogy with quarkonium, the pro-

duction of high energy jets is a two–step process where
a pair of high E � partons is perturbatively produced at
a scale E � , and hadronize into jets at a scale of order
Λ � � � by stretching color strings between the partons
and spectators. The strings subsequently hadronize.
Rapidity gaps appear when a cluster of dynamical par-
tons, i.e. interacting partons or spectators, form a
color singlet. As before, the probability for forming
a color singlet cluster is inversely proportional to its
color multiplicity.

The soft color procedure is obvious in a specific ex-
ample: let us calculate the gap formation probability
for the subprocesses pp̄ → Q

�

Q̄
�

→ QQ̄XY , where
Q

�

stands for u or d valence quark, and X (Y ) is
the diquark remnant of the proton (antiproton). The
final state is composed of the X (3⊗3) color spectator
system with rapidity η � = +∞, the Y (3̄ ⊗ 3̄) color
spectator system with η � = −∞, one 3 parton j1,
and one 3̄ parton j2. It is the basic assumption of
the soft color scheme that by the time these systems
hadronize, any color state is equally likely. One can
form a color singlet final state between X and j1 since
3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1, with probability 1/27.
Because of overall color conservation, once the system
X ⊗ j1 is in a color singlet, so is the system Y ⊗ j2.
Moreover, to form a rapidity gap these systems (j1⊗X
and j2⊗Y ) must not overlap in rapidity space. In this
configuration, the color strings linking the remnant and
the parton will not hadronize in the region between
the two jets. We have thus produced two jets sepa-
rated by a rapidity gap using the color counting rules
which form the basis of the color evaporation scheme
for calculating quarkonium production.

3. Rapidity Gaps at HERA

The differential cross section has two sources of
gap events: color evaporation gaps (dσ


 � �� � � ) and back-
ground gaps (dσ


 � �
� 
 ). In our model, the gap cross sec-
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Figure 1. Frequency of events with rapidity gap be-
tween jets as a function of the gap size ∆η in γp colli-
sions, and as function of the jets transverse energy in
pp̄ collisions.

tion is the weighted sum over resolved events, dσ

 � �� � � =∑

� F � dσ
�

� � � , with gap probability F � for the differ-
ent processes. Background gaps are formed when the
region of rapidity between the jets is devoid of hadrons
because of statistical fluctuation of ordinary soft parti-
cle production. Their rate should fall exponentially
as the rapidity separation ∆η between the jets in-
creases. We parametrize the background gap proba-
bility as F � 
 (∆η) = e

�
(2−∆ � ), where b is a constant.

The background gap cross section is then written as
dσ


 � �
� 
 = F � 
 (∆η)dσ

� � � � − dσ

 � �� � � ).

The gap frequency F

 � �

(∆η) = dσ

 � �

/dσ
� � � �

is
shown in the figure, where we depict the contribu-
tions of the color evaporation mechanism and the back-

ground.

4. Rapidity Gaps at Tevatron

The color evaporation model prediction for the gap
production rates in pp̄ collisions is analogous to the one
in pγ interactions, with the obvious replacement of the
photon by the antiproton, represented as a 3̄⊗ 3̄⊗ 3̄
system.

The distributions presented by CDF are normalized
to unity on average. Therefore our predictions do not
exhibit any free parameter to be adjusted. In the figure
we compare our predictions with CDF results of the
gap fraction as a function of the jets transverse energy.
To compare with DØ results we assumed an ad-hoc
survival probability of 30%.

We can also compare the ratio R = F

 � �
630 /F


 � �
1800 with

the experimental result. DØ has measured this fraction
for jets with E � > 12 GeV for both energies, and they
found R = 3.4± 1.2; we predict R = 2.5± 0.5. On the
other hand, CDF measured this ratio using different
values for E

� � �� at 630 GeV and 1800 GeV; they ob-
tained R = 2.0± 0.9 while we obtained R = 2.0± 0.4
for the same kinematical arrangement.

5. Conclusion

In summary, the occurrence of rapidity gaps between
hard jets can be understood by simply applying the
color evaporation scheme for calculating quarkonium
production to the conventional perturbative QCD cal-
culation of the production of hard jets. The agreement
between data and this model is impressive.
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1. J. Amundson, O. J. P. Éboli, E. M. Gregores, and
F. Halzen, Phys. Lett. B372, 127 (1996).

2. H. Fritzsch, Phys. Lett. B67, 217 (1977); F.
Halzen, Phys. Lett. B69, 105 (1977).

3. R. Gavai et al., Int. J. Mod. Phys. A10, 3043
(1995); J. Amundson, O. J. P. Éboli, E. M. Gre-
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1. Introduction

Rapidity gaps between jets are an ideal configuration
for searching for new-physics signatures [1]. They also
provide a clean environment for testing the dynamics
of perturbative QCD in Regge limit [2]. The large
rapidity difference between the jets together with the
transverse momentum of the two back-to-back pointing
jets ensure that the center of mass energy of the hard
process is much greater than its typical hard scale. In
literature, alternative calculations have been proposed
for such processes including the approximation of the
n-gluon exchange by a BFKL pomeron [2,3] and soft
color recombination (evaporation) [4,5]. Both models
predict different dependences of the rapidity gap event
fraction on the width of the rapidity gap and on the
jet transverse momentum.

In this paper we shall calculate the experimentally
observable cross section for color singlet exchange be-
tween jets using a detailed Monte Carlo simulation
of both parton-parton interactions producing rapidity
gaps and non-perturbative processes giving rise to the
“underlying event”. We use the model Phojet [6,7]
which treats perturbative QCD effects such as hard
parton-parton scattering and parton showers as well as
non-perturbative effects like soft hadronic interactions.
This model is based on the Dual Parton Model [8] in
its two-component version [9].

2. Implementation of color evaporation model

To describe events with color singlet exchange be-
tween jets within the Phojet Monte Carlo, we imple-
ment a soft color reconnection (SCR) model [4,5,10].
The simplest hard q–q event, where SCR leads to a
rapidity gap between two jets is an event with just
one single hard valence–quark – valence–quark scat-
tering. In normal events in the Dual Parton Model we
get two color strings each being stretched between one
scattered quark and the diquark of the other hadron.
Large rapidity gaps are exponentially suppressed in
such events. However, SCR can cause a color transfer
due to the exchange of soft gluons resulting in a color
configuration where the strings connect the hard scat-

tered quark and the diquark of the same hadron. These
are events with might lead to hadronic final states with
a large rapidity gap between two jets. In Phojet, we
use the following probabilities of color singlet exchange
F � � : F � 
 : F 
�
 = 1/9 : 1/24 : 1/64 [4].

In most of the hard scattering events we have a
non-negligible contribution from the underlying event,
mainly resulting from spectator interactions. Thus,
even if a rapidity gap appears in one of the partonic
collisions, the gap might be filled by hadrons produced
in another parton-parton interaction. Furthermore,
hard parton radiation (initial and final state radiation)
can change the size of rapidity gaps considerably. Both
effects are simulated in our Monte Carlo calculation
which includes QCD parton showers and multiple soft
and hard interactions as implemented in PHOJET.
This means that the probability for the gap survival
[1] is calculated in detail.

3. Comparison to data

Both the D0 and CDF collaborations have published
data on dijet production with rapidity gaps [11–17]. In
the following we will concentrate on the D0 data [14].
Further comparisons of our calculations with data can
be found in [18–20].

D0 [14] uses at
√
s= 1800 GeV two different triggers.

With the high E⊥ trigger (we refer to this in short as
D0–h) they find opposite side (ηjet1 × ηjet2 < 0) dijets

with Ejet−2
⊥ > 30 GeV and |ηjet| > 2. The pseudora-

pidity gap is at |η| < 1.3. With this the fraction of
JgJ events is found to be RJgJ−D0−h = (JgJ)/(JJ) =
(0.94± 0.04(stat)± 0.12(syst)).

With the low E⊥ trigger (we refer to this in short
as D0–l) they find at

√
s = 1800 GeV opposite side

(ηjet1 × ηjet2 < 0) dijets with Ejet−2
⊥ > 12 GeV

and |ηjet| > 2. The pseudorapidity gap is at |η| <
1.3. With this the fraction of JgJ events is found
to be RJgJ−D0−l = (JgJ)/(JJ) = (0.54 ± 0.06(stat) ±
0.16(syst)). In Phojet we find with the D0 triggers
RJgJ−PHOJET−D0−h = 1.06% , RJgJ−PHOJET−D0−l =
0.45% . Here the background JgJ events with only an
accidental gap were subtracted. These Phojet results
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Figure 1. The change of RJgJ with the Ejet2
⊥ of he next

to leading jet. Data from the D0 Collaboration are
compared to the Phojet results obtained with SCR.

are fully consistent with the experimental data. The
same is found comparing to the 630 GeV data and to
the CDF data. The change of RJgJ with the Ejet2

⊥ of the
second leading jet was studied by the D0 Collaboration
[14]. A modest rise of the color singlet fraction with

Ejet2
⊥ was found. In Fig. 1 we compare the Phojet

results on RJgJ with these data. The Phojet pre-

dictions exhibit a Ejet2
⊥ dependence being compatible

with the data. The D0 Collaboration [14] also studied
for the D0–h and D0–l triggers the dependence of RJgJ

on ∆η = |ηjet1 − ηjet2|. For both triggers a slight rise
of RJgJ with ∆η was found which is well described
by the PHOJET simulations (not shown here). It is
important to notice that our calculation does not only
describe the rise of RJgJ with Ejet2

⊥ and ∆η , but also
reproduces the absolute sizes of RJgJ without free pa-
rameters.

We also compared the pseudorapidity distributions
of charged hadrons of events passing the D0–h and
D0–l triggers with and without gap. The remarkable
feature of this comparison is, that the opposite side
jet trigger without the gap requirement selects events
with much higher rapidity distribution (particle multi-
plicity) than typically found in minimum bias events.
We interpret this in the following way. With the jet
trigger events are selected with an exceptional large
number of soft and hard multiple interactions and par-
ton emissions.

4. Rapidity gap survival probability

The rapidity gap survival probability 〈|S|2〉 was orig-
inally defined by Bjorken [1]. In a series of recent pa-
pers, Gotsman, Levin and Maor [21–23] use a eikonal

model to calculate the energy dependence of 〈|S|2〉.
For example, they obtain in pp̄ collisions at 630 (1800)
GeV values of 16.3% (5.6 %) [22]. The eikonal model
used in Phojet is a two-channel model which differs
certainly from the one used by Gotsman et al., but the
gap survival probability as contained in the Phojet
Monte Carlo events is calculated in a rather analogous
way. We can use the JgJ events and JJ events obtained
from Phojet for given trigger conditions to give the
gap survival probability according to Phojet.

In the Phojet Monte Carlo we can subdivide the
hard scattering events into g–g, g–q and q–q scatter-
ings. We calculate (not shown here) for the D0–h and
D0–l triggers the fractions or weights W �

� � for i = g–g,
g–q and q–q events for JJ events (without gap trigger),
W

�
� 
 � for JgJ events obtained with SCR and W

�
� 
 � � 


for background JgJ events (obtained without SCR).
We find, that q–q scattering dominates the JgJ events,
but g–q and g–g scattering contributes also.
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Figure 2. The gap survival probabilities 〈|S|2〉 � accord-
ing to Phojet given separately for i = g–g, g–q and
q–q events and for the D0–h and D0–l triggers.

Starting from the JJ and JgJ weightsW
�

� � and W
�

� 
 �

(i = g–g, g–q and q–q) and the SCR probabilities F �
we work out the gap survival probabilities according
to Phojet. We obtain the gap survival probabilities
as follows

〈|S|2〉 � =
W �

� 
 �

W �
� � F �

. (1)

W
�

� � F � is the probability to have two jets correspond-
ing to the given trigger without gaps and furthermore
a gap between the two jets due to SCR. Most of the
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gaps are filled by soft or hard multiple interactions and
or parton showering, therefore W �

� 
 � is considerably

smaller than W �
� � F � . In Fig. 2 we plot for the D0–h

and D0–l triggers at
√
s = 1800 GeV the 〈|S|2〉 � ob-

tained. We find values larger than but roughly consis-
tent to the calculation by Gotsman et al. [22]. How-
ever, in contrast to the assumptions used in [1,22], we
find a slight dependence of the gap survival probability
on the trigger conditions resulting in a smaller 〈|S|2〉 �
for the D0–l trigger. Furthermore, we find 〈|S|2〉 � to
depend on the hard scattering process with 〈|S|2〉 � − �

larger than 〈|S|2〉 
 − 
 and 〈|S|2〉 
 − � .

5. Concluding remarks

The processes implemented in Phojet allow us to
study hard and soft diffraction in many channels. Here
we have been able to demonstrate, that the Phojet
model supplemented with the soft color recombination
mechanism describes remarkably well the data from
the TEVATRON on color singlet exchange between
jets. Besides of finding a good agreement with the D0
and CDF data we are able in addition to study many
features of the model, which would be useful to verify
in the experiments.

We hope that the Phojet tool and more TEVA-
TRON data in Run II on color singlet exchange and on
hard and soft single diffraction and central diffraction
could help to answer important questions: (i) Is soft
color recombination the correct mechanism to describe
color singlet exchange processes between jets? Could
this mechanism be responsible for other features of
diffractive processes as well? (ii) Can hard diffraction
consistently be described by pomeron structure func-
tions? What is the best pomeron structure function?
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Hard Color Coherent Phenomena
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We consider hard color coherent phenomena which can be probed at FNAL collider.

1. Introduction

During the last few years a number of hard color
coherent phenomena was discovered which can be le-
gitimately calculated in QCD: pion dissociation into
2 jets observed in [1] is consistent with predictions of
[2], HERA data for exclusive production of mesons in
DIS initiated by longitudinally polarized photons are
consistent with predictions of [3]. These processes al-
low both to study the interaction of small color dipoles
with hadrons at high energies and hence probe break
down of the DGLAP approximation as well as to study
hadron wave functions in the minimal Fock space con-
figurations.

2. Hard exclusive diffraction

2.1. Diffraction into three jets
It is possible that a nucleon (meson) has a significant

amplitude to be in a configuration where valence par-
tons are localized in a small transverse area together
with the rest of the partons. These configurations are
usually referred to as minimal Fock space configura-
tions - |3q〉 (|qq̄〉). Hadrons in such a configuration
occupy a small transverse area with a larger proba-
bility than in the case of non-minimal configurations,
because, e.g. the long range pion field is very weak.
Therefore, such initial configurations are expected to
interact with other hadrons, even at high energy, with
a small cross-section. However for the fixed transverse
size, b, this cross section is proportional to the gluon
density at Q2 ∼ 10/b2 and hence rapidly increases
with increase of energy. At sufficiently high energies
this growth should be tamed not to violate unitarity
constraints, for the recent discussion see [4].

In the case of the “elastic scattering” of such a pro-
ton configuration off another proton, this three-quark
system with large relative momenta should preferen-
tially diffractively dissociate into a system of three jets
with large transverse momenta p � � ∼ π b−1, where
b is the transverse size of the minimal configuration.
Kinematics of the process is presented at the lego plot
of Fig.1.

The production cross-section for the three jets can
be estimated to leading order in (α � lnM2

3
� � � ). As in

the case of diffractive vector meson production in deep
inelastic scattering, the cross-section is proportional
to the square of the gluon density in the nucleon at
x ≈ M2

3
� � � � /s, and virtuality ∼ p2� � � � [5]. The dis-

tribution over the fractions of the momentum carried
by the jets is proportional to the square of the light
cone wave function of the |3q〉 configuration. Hence the
diffraction of a proton into three jets provides impor-
tant information about the short-distance quark struc-
ture of the proton, and also provides unique informa-
tion about the longitudinal momentum distribution in
the |3q〉 configuration. From an analysis of diffraction
data [5,6], numerical estimates for

√
s = 2 TeV lead to

a value of the cross-section integrated over everything
except a p � � � � threshold for one jet,

σ3
� � � � ∼ (10−5 − 10−6)

(
5 GeV

p � � � �

)8

mb. (1)

The probability of the |3q〉 configuration is estimated
using a phenomenological fit to the probability of con-
figurations of different interaction strengths in a nu-
cleon (cf. [5,6]).

Another interesting group of hard processes is pro-
ton diffraction into 2 high p � jets and one collinear
jet. These processes are dominated by parton con-
figurations when only 2 quarks in the projectile pro-
ton are close to each other, i.e., have large transverse
momenta. Such quark configurations are relevant for
estimates of proton decay rates. The wave function
describing such a configuration can be measured in the
double-diffraction process where each of the protons
fragments into 3 high p � jets: pp→ jet(k � )+jet(−k � −
q � ) + jet(q � ) + jet(l � ) + jet(−l � − r � ) + jet(r � ).

2.2. Tagged-pion diffraction dissociation
Reactions containing a very forward neutron or a

∆-isobar can be dominated by the scattering off the
pion cloud of the nucleon. In this way the proton beam
is effectively converted into a pion beam; the leading
baryon is effectively a pion tag. A necessary condition
that one-pion exchange dominates this process is that
the transverse momentum of the forward baryon be
small compared to 300 MeV and, in the case of the ∆,
that its x � exceed 0.9. The precise condition is
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Figure 1. LEGO plot for diffraction of proton into three jets

|t| = (
M2

�

x �
−m2� )(1− x � ) +

k2
�

x �
≤ 0.1 GeV2. (2)

One must still deal with absorptive corrections due
to the simultaneous interactions of the projectile with
a nucleon and a pion. These are expected to be
corrections no larger than a factor two.

Two types of processes would be of special interest:

Pion diffraction into two jets:

In analogy with the process of nucleon diffraction
into three jets it is expected that a pion can dissociate
into two jets in the process π+p→ jet1 +jet2 +p [7,2]
(Fig. 2 ).

The cross-section for this process has a similar struc-
ture [2]: due to the rapid increase of the gluon den-
sity with energy one expects the cross-section for pion
diffraction into two jets to be much larger than in the
case of the fixed target experiment E791 at FNAL
which has just reported first evidence for this effect
[1].

Two → three hard reactions:

It is also interesting to study large |t| elastic scatter-
ing off the pion cloud in a number of reactions [8].

pp→ B(p � � ) + π(p � � ) + p(p � � ), (3)

for B = N,∆, x � (B) ≥ 0.9, p � � ∼ 0, and p � � ∼
−p � � � 1 GeV, which corresponds to the proton
elastic scattering off the pion cloud. Although the
flux of such pions in the proton is only ∼ 1%, at
large |t| ≈ p2� � the cross-section for elastic πp scat-
tering is expected to be substantially larger than the

cross-section for elastic pp scattering. ∗ Hence the
cross-sections for reaction (3) and elastic pp scattering
at |t| larger than 10 GeV2 should be comparable.

One may also consider elastic scattering of two pions
in processes like

pp→ B(p � � ) + π(p � � ) + π(p � � ′) +B′(p � � ′)
(4)

for B,B′ = N,∆, x � , x � ′ ≥ 0.9, p � � ∼ p � � ′ ∼ 0,
and p � � ∼ −p � � ′ � 1 GeV. Again the much slower
decrease of the ππ elastic scattering with |t| helps to
compensate the small probability of finding both nu-
cleons in configurations with pions.

Many generalizations of such processes can be esti-
mated. These include channels with strange particles
in the final state like

pp→ (ΛK+,Σ+K0) + p

as well as kinematics for which the transverse mo-
mentum of the proton is balanced by a baryon, not
a meson. Such processes are of interest, both for the
study of high-energy scattering and for the structure
of color correlations in hadrons, especially in relation
to the question of intrinsic strangeness in nucleons, see
e.g. [10]. Note that at sufficiently large |t|, where the
colliding-hadron configurations are sufficiently small
for the applicability of perturbative QCD, new factor-
ization relations are expected to be valid relating these
processes with analogous exclusive DIS processes.

3. Diffractive hard factorization

In difference from the case of deep inelastic scatter-
ing there is no reason for applicability of the factor-
∗The high-energy data on large |t| πp elastic scattering [9] are
consistent with this expectation.
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Figure 2. LEGO plot for the tagged 2 jet production

ization theorem for diffractive scattering. Hence it is
convenient to represent the measured cross-section as
a factorizing cross-section times a suppression factor:

σtrue = σfact(x � , x � � )× S(x � � , t, s). (5)

Estimates of the value of S typically give a value S ∼
1
10 .
S may actually be a slowly varying, but rather com-

plicated function of initial energy, x � � , t, and x � . For
example, one can expect that it will decrease with
an increase of σ � � � (pp) (stronger spectator effects), in-
crease with increasing |t| (selection of more weakly
interacting configurations in the intact nucleon [11]),
and increase as x � becomes large (due to a selection
of smaller size configurations in N) (N is the nucleon
which diffracted inelastically).

It would be also interesting to study diffraction to
inelastic low-mass final states B in the process:

p(p1) + p(p2)→ (jet1 + jet2 +X) +B (6)

which may select configurations with an interaction
strength rather different from the average one. Sev-
eral examples of interesting channels are the aforemen-
tioned B = nπ+, pπ+π− and ΛK+, each of which can
be studied as a function of p � of the produced jets for
fixed t ∼ 0. A hard factorization combined with Regge
factorization would lead to

σ(p(p1) + p(p2)→ (jet1 + jet2 +X) +B)

σ(p(p1) + p(p2)→ (jet1 + jet2 +X) + p)
=

σ(p(p1) + p(p2)→ p+B)

σ(p(p1) + p(p2)→ p+ p)
(7)

It is natural to expect that at least for large enough
p � this factorization would be broken, with the cross-
section of diffractive jet production in the inelastic
diffraction channel substantially enhanced compared
to the expectations of Eq. (7).
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Double Pomeron Physics in Run II
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A “normal” event at the Tevatron produces ∼ 0.3
hadron resonances per unit of ∆η × ∆φ. Hence in a
region of length ∆y, one expects ∼ 0.3 × 2π × ∆y of
them. Naively assuming no correlations, i.e., a Poisson
distribution in the number, leads to the probability
≈ e−2 � 0 ∆ �

of zero particles: a rapidity gap. A much
more sophisticated argument from Regge theory also
predicts the gap probability to be suppressed expo-
nentially, albeit with a smaller coefficient: σgap ≈
e2 ( �

R−1) ∆ � ≈ e−1 � 0 ∆ �

based on the vector meson
Regge intercepts α � , α � near 0.5 .

But rapidity gap cross sections are actually not sup-
pressed exponentially in this way. Fitting the multi-
plicity distribution in a region > 2−3 units in rapidity,
using a smooth distribution such as negative binomial
or generalizations thereof, reveals an excess at zero
multiplicity which is the rapidity gap cross section.
The pomeron can be defined operationally as the thing
that makes rapidity gaps. We must keep our minds
open, however, to the possibility that there may be
more than one kind of pomeron — e.g., the classical
“soft” pomeron may be different from the pomeron
that operates when there is a large momentum trans-
fer t at one end of the gap; or when there is a large
momentum transfer p⊥ across the gap.

Roman pots that detect p or p̄ very close to the beam
directions can be used to study rapidity gaps according
to the kinematic relation

ξ = 1− x� =
∑√

p2
⊥ +m2 e

�

/
√
s .

For example if a p̄ is observed with a momentum frac-
tion x� = 0.98, no pions with p⊥ > 0.3 GeV can appear
at y > 4.7, so there is a gap > 2.8 between any such
pion and the leading proton which is at y = 7.5 . The
Roman pot method of observing gaps has several ad-
vantages: it allows us to study pure p̄ going in the beam
direction instead of an unknown mixture of p̄ and p̄∗; it
allows measurement of the momentum transfer squared
t; and if Roman pots can be placed both forward and
backward, important azimuthal angular correlations
between the forward and backward p and p̄ can be
observed. It will be important to see if final state
properties change with t (or tforward and tbackward). It
is also important to study how large the non-diffractive

contamination is for, say, x < 0.95. Perhaps one could
also get a handle on this by comparing forward pro-
tons with forward neutrons as HERA, using the Zeus
forward neutron detector.

Double pomeron exchange (DPE) will be studied in
Tevatron Run II in reactions of the form p p̄ → pX p̄.
A variety of centrally produced systems X are worthy
of study:

1. X = soft, inclusive: The fully differential cross
section is dσ/dt1 dt2 dy1 dy2, where t1, t2 are the
4-momentum transfers to the quasi-elastically
scattered p and p̄, and y1, y2 are the inside edges
of the gaps. This cross section is integrated over
t1 and t2 in the absence of Roman pots. The
measurement can be compared with predictions
based on measurements of single diffractive scat-
tering by assuming Regge factorization.

2. X = soft, exclusive: Low multiplicity fi-
nal states in DPE are a prime hunting ground
for glueball states, since X automatically has
isospin 0 and is made more-or-less from gluons
[1]. In this case, azimuthal correlations with the
quasi-elastic p and p̄ can be particularly signifi-
cant [2]. The absence of large p⊥ presents a chal-
lenge for triggering on these final states, but low
multiplicity and the presence of the gaps and/or
Roman pot triggers should make it possible.

3. X = hard, inclusive: Dijet production in DPE
[4] has already been measured in Run I; but Run
II offers, along with improved accuracy and the
push to higher jet p � , the possibility to study
the dependence on momentum transfers to the p
and p̄. It should also be possible to measure the
fraction of the jets that are bb̄.

4. X = hard, exclusive: It is possible that some
simple heavy quark systems can be produced
exclusively in DPE [3]. A promising candidate
to search for is the bb̄ state χ �

1(1P ), which has
a mass of 9.892 GeV. It decays with a 35%
branching ratio to γΥ(1S), with subsequent de-
cay Υ → `+`− with 10% branching ratio (` = e
or µ). This would have a remarkable signature:
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nothing but `+`−γ in the entire central detec-
tor. Although the rate will surely be small, the
transverse momenta of several GeV along with
the large quiet regions in the detector should be
sufficient to make triggering possible. Meanwhile
the large Q2 scale offers the hope of attempting
to calculate the cross section in pQCD. Depend-
ing on how the pomeron really works, exclusive
processes may turn out to be very strongly sup-
pressed by the condition that in spite of the large
Q2 scale, no extra soft gluons are radiated.

The quantum number selection rules for the pro-
duction of exclusive bb̄ states are as follows. The
pomeron is believed to have the same internal
quantum numbers as the vacuum, so the state
X produced by the “collision” of two pomerons
must have I = 0 and C = +. The pomeron is
an even-signature Regge trajectory, so it has spin
and parity J

�

= 0+, 2+, 4+, . . . ; but when two
of these are combined with the orbital angular
momentum of the collision, all J

�

values become
allowed for X . For the purposes of a DPE ex-
periment, χ �

1(1P ) (m = 9.892, J
� �

= 1++)
and χ �

2(1P ) (m = 9.913, J
� �

= 2++) are the
most promising because of their large (35%, 22%)
branching ratios into γΥ(1S). As a control ex-
periment, the states Υ(1S) and Υ(2S) should
not be produced in DPE, because they have odd
charge conjugation.

One could also look for ΥΥ or ψψ exclusive
states, or even γψ [5], in DPE.

Finally, an important experimental problem to be
addressed is how to study gap physics in the presence
of multiple pp̄ collisions at the higher luminosity of
Run II. Presumably the main tool will be to make
use of scheduled or unscheduled running in which the
luminosity is not in fact very high. For jet physics, the
Roman pot method permits gap studies even when the
gap cannot be observed directly because it is filled in
by multiple interactions.

At the LHC, very high luminosity will make conven-
tional rapidity gap physics impossible. With the help
of Tevatron Run II, we should begin to think about
whether similar physics can be done by a looser but
more enforceable criterion of no minijets instead of
no particles in a “gap” region. Since jet multiplicities
are much less than particle multiplicities, this can only
work if the required length ∆y to define a gap is made
larger.

As a final comment, backgrounds to DPE — along
with some important questions regarding underlying
events in jet physics — would benefit from an improved
study of “minimum bias” physics, along the lines of

what was done long ago and at a lower energy in the
UA(5) experiment. Results from that experiment are
still being used in the absence of measurements at√
s = 1.8 TeV. This is another important topic to clean

up before the LHC, where fluctuations from a large
number of multiple interactions will be important.
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In this note we give the highest of reasonable estimates for the value of cross section of the double Pomeron Higgs meson
production and suggest a new mechanism for heavy quark diffractive production which will dominate at the Tevatron energies.

1. INTRODUCTION

In this note we consider three reactions

p+ p −→ p+ [LRG] +H + [LRG] + p ; (1)

p+ p −→ X1 + [LRG] +H + [LRG] +X2 ; (2)

p+ p −→ b+ b̄+X + [LRG] + p ; (3)

where LRG denotes the large rapidity gap between
produced particles and X corresponds to a system
of hadrons with masses much smaller than the total
energy. The first two reactions are so called double
Pomeron production of Higgs meson while the third is
the single diffraction production of bottom - antibot-
tom pair.

The goals of this note are the following:

1. To give the highest from reasonable estimates
for the cross sections of reactions Eq. (1) and
Eq. (2) ;

2. To summarize all uncertainties which we see in
doing these estimates ;

3. To show that there is a new mechanism of dif-
fractive heavy quark production ( Eq. (3) )
which is suppressed in DIS and dominates in
hadron-hadron collision at the Tevatron ;

4. To estimate the value of the cross section of re-
action Eq. (3) due to this new mechanism and
to show that all attempts to compare the diffrac-
tion dissociation in hadron-hadron collisions and
DIS[1] look unreliable without a detail experi-
mental study of this process at Fermilab.

2. DOUBLE POMERON HIGGS PRODUC-
TION

2.1. Inclusive Higgs production
Inclusive Higgs production has been studied in many

details [2–4] for the Tevatron energies. The main

Pomeron builders

Parasite emission
H

Q
→

⊥

Q
→

1,⊥

Q
→

2,⊥

Figure 1. Double Pomeron Higgs production in QCD

source for Higgs is gluon-gluon fusion which gives
σ(GG → H) = 1pb for Higgs with mass M � = 10GeV
[4]. The reference point for our estimates is the cross
section of Higgs production due to W and Z fusion
which is equal to σ(WW (ZZ) → H) = 0.1pb [4]. In
this process we also expect the two LRG [3] and in
some sense this is a competing process for reactions of
Eq. (1) and Eq. (2).

2.2. Double Pomeron Higgs production is a
“soft” process !!!

Let us estimate the simplest digram for the DP Higgs
production, namely, Fig.1 without any of s-channel
gluons. This diagram leads to the amplitude

M(qq → qHq) = (4)

2

9
2 g �

∫
d2Q⊥

Q2
⊥Q

2
1 �⊥Q

2
2 �⊥

4α � (Q2
⊥) ( ~Q1 �⊥ · ~Q2 �⊥) .

For reaction of Eq. (1), |t1| = | ~Q⊥ − ~Q1 �⊥| ≈ |t2| =

| ~Q⊥ − ~Q2 �⊥| ≈ 2/B � � and therefore,

M(q + q → q +H + q) ∝
∫
d2Q⊥
Q4
⊥
. (5)
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Eq. (5) has an infrared divergence that is regularized
by the size of the colliding hadrons. In other words,
one can see that the simplest diagrams shows that DP
Higgs production is a typical “soft” process.

2.3. The more the gluons the more the prob-
lems...

In Fig.1 one can see that we have two sets of gluon
which play a different role. The first one is the glu-
ons that connect t-channel lines. Their contribution
increases the value of cross section [5–8]

dσ � (pp→ ppH)

dy
| � =0 = (6)

4 g2
�

162 π3

∫
dt1dt2g

2� � g2� � e
Bel(s/M

2
H

)

2 ( � 1+ � 2)

(
s

M2
�

)2 ∆P

Eq. (6) can be rewritten in the form

dσ � (pp→ ppH)

dy
| � =0 = (7)

16

π
σ(GG → H)

(
σ � � (s/M2

� )

σ � � � (s/M2
� )

)2

which is convenient for numeric estimates. However,
first we need to find the value of σ(GG → H) = g2

� .
In inclusive production the value of g2

� has been cal-
culated [9]

g2
� =

√
2G � α2

� (M2
� )N2/9π2. (8)

However, I think that the scale of α � for our process
is not the mass of Higgs but the “soft” scale ( α � (Q2

0)
with Q2

0 ≈ 1GeV 2 ). Indeed, using BLM procedure
[10] we can include the bubbles with large number of
light quarks only in t-channel gluon line which carry
the “soft” transverse momenta. This gives a sizable ef-
fect in numbers, since σ(GG → H) forM � = 100GeV
is equal to 1.16 pb (α � (M2

� )) and to 20 pb (α � (Q2
0)).

Taking the last value we have

dσ � (pp→ ppH)

dy
| � =0 = 2pb (9)

This is our maximal value since all other effects related
to gluon emission suppressed the value of the cross
section.

2.4. Cost of survival
Actually, we have to multiply the cross section of

Eq. (9) by two factors to obtain the estimate for the
experimental cross section

d

σ
(pp→ ppH)dy| � =0 (10)

= S2
� � � � � S

2
� � �

dσ � (pp→ ppH)

dy
| � =0

The first factor is the probability that there is no in-
elastic interaction of the spectators in our process. I
The situation with calculation of this factor has been
reported in this workshop [11] and the conclusion is
that this factor S2

� � � � � = 0.07 ÷ 0.13 at the Tevatron
energies. The discussion for double Pomeron processes
you can find in Ref. [12]

The second factor in Eq. (10) describe the probabil-
ity that there is no parasite emission in Fig.1 which
leads to a process with hadrons in central rapidity
region which do not come from the Higgs decay. The
generic formula for S2

� � � is

S2
� � � � � = e−

� �
G(∆ � =

� � ( � 2
H

� � 0)
�

(11)

where < N � (∆y) > is the mean number of gluon
in interval ∆y. In pQCD this number is large [13]
< N � (∆y) ≈ 8 which leads to very small cross sec-
tion for Higgs production. For “soft” double Pomeron
production we can estimate the value of < N � (∆y)
assuming that the hadron production is two stage pro-
cess: (i) production of mini jet with p � ≈ 2 − 3GeV
and (ii) minijet decay in hadrons which can be taken
from e+e− → hadrons process. Finally,

< N � (∆y) >=
N � � �

� � � �

N(one minijet)
≈ 2÷ 3 ,

(12)

which gives S2
� � � � � � � � � � � � � � � � ≈ 0.1.

2.5. God loves the brave !!!
Finally, we have

dσ(pp→ ppH)

dy
| � =0 = 0.02pb (13)

We can increase the cross section, measuring reaction
of Eq. (2). Its cross section is equal to

dσ(pp→ X1X2H)

dy
| � =0 = (14)

dσ(pp→ ppH)

dy
| � =0

(
σ � � ·B � � (

√
s/M � )

4σ � � ·B � � (
√
s/M � )

)2

=

3− 4
dσ(pp→ ppH)

dy
| � =0 = 0.06÷ 0.08pb

2.6. Sensitive issues
Eq. (13) and Eq. (14) are our results. I firmly believe

that they give the maximum values of the cross sec-
tions which we could obtain from reasonable estimates.
However, I would like to summarize the most sensitive
points in our estimates:
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1. The scale for running coupling QCD constant in
cross section of Higgs production. We took the
“soft” scale for our estimates. However, it is a
point which needs more discussion and even more
it looks in contradiction with our feeling, as I
have realized during our last meeting. My argu-
ment is the BLM procedure but more discussions
are needed;

2. We took S2
� � � � � for double Pomeron processes the

same as for “hard” LRG process. The justifi-
cation for this is eikonal type model [12], but
it could be different opinions as well as direct
experimental data;

3. The estimates for S2
� � � is very approximate and

we need to work out better theory for this sup-
pression.

3. DIFFRACTIVE HEAVY QUARK PRO-
DUCTION

The main observation is that there are two con-
tributions for heavy quark diffractive production (see
Eq. (3)): (i) the first is so called Ingelman-Schlein
mechanism [15] which described by Fig.2-a and (ii)
the second one is closely related to coherent diffrac-
tion suggested in Ref. [16] and which corresponds to
Fig. 2-b. The estimates of both of them have been
discussed in Ref. [14]. The main conclusion is that
the main contribution for the Tevatron energies stems
from CD (see also [17,18] while the IS mechanism leads
to the value of the cross section in one order [14,19]
less than CD one. on the other hand in DIS the CD
contribution belongs to the high twist and because of
that it is rather small [14,17].

Our conclusion is very simple. At the Tevatron we
has a good chance to measure a new contribution to
“hard” diffraction which is small in DIS. The typical
values of the cross section is

dσ

dY
=

∫ ∞
� min
t

dp2
�

∫ +∞

−∞
d∆y

∫ ∞

0

dq2
�

dσ

dY d∆ydq2
� dp2

�

≈ 10−4 ÷ 10−10 for p � � � � � = 5 ÷ 50 GeV
(15)

One can find all details in Ref. [14].
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Diffractive Production of Glueballs
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This contribution is based on the work with John Ellis [1], in which we link the unexpected azimuthal dependence of
the production of scalar glueball candidate observed recently by the WA91 and WA102 Collaborations to the broken scale
invariance of QCD.

Confinement and the non-Abelian structure of QCD
imply the existence of bound states of gluons. Clearly,
finding and recognizing such glueball states is very im-
portant. One intriguing possibility is to identify the
observed f0(1500) state with the lightest scalar glueball
[2]. To verify the gluonic nature of this state, one has to
check in particular if the mechanisms of its production
are consistent with those expected for glueball states.
This suggests in particular that one looks for its pro-
duction in gluon-rich environments. It was suggested
long time ago [3] that the glueballs should be produced
copiously in the central production process

pp→ p � Xp � (1)

This may be dominated by double-Pomeron exchange
when the final-state protons carry large fractions of
the initial-state proton momenta in the centre-of-mass
frame. In fixed-target experiments, this requires the
presence of fast (p � ) and slow (p � ) protons in the final
state.

Recently, a big step in the investigation of this pro-
cess has been taken by the WA91 and WA102 Collab-
orations, which have reported remarkable kinematical
dependences of central meson production [4,5]. Specif-
ically, it was observed [5] that the the production of
glueball candidates depends strongly on the relative
transverse momenta of the final-state protons p � and
p � . The variable suggested in [5,6] was the difference
between the transverse momenta ~p′ � and ~q′ � of the
final-state protons:

dP � = |~p � ′ − ~q � ′|. (2)

The dependence of central meson production on this
variable appears to be very non-trivial: namely, it
was found that at small dP � the production of glue-
ball candidates, in particular the f0(1500), was signif-
icantly enhanced over the production of conventional
q̄q mesons. It was proposed [6] that this remarkable
feature of central production could be related to the
intrinsic structure of glueball states, and that the selec-
tion of events with small dP � could act effectively as a

glueball filter. So far, no dynamical explanation of this
important empirical observation has been suggested, so
the challenge for theory is to understand the dynamics
behind this glueball filter.

We have proposed [1] the following form for the
coupling responsible for scalar glueball production in
Pomeron-Pomeron collisions:

 L ∼ Θ(x)G
� �

� (x)G
�

� � (x), (3)

In momentum space, this coupling leads to an ampli-
tude that is proportional to the square of the scalar
product of the four-momenta of the colliding gluons g1

and g2:

M ∼ (g1.g2g
� � − g �

1 g
�

2 )(g1.g2g � � − g1 � g2 � )

∼ (g1.g2)2. (4)

This form of the coupling, and the Pomeron flux
factors, imply [1] that the production of the scalar
glueball should be most efficient when the two protons
scatter in parallel directions in the transverse plane, in
agreement with the experimental observations.

Our findings support the idea that the azimuthal
dependence in double diffractive production provides
a valuable way to single out the scalar glueballs and
to understand their properties. It would be extremely
interesting to extend these studies to collider energies,
where the dominance of the Pomeron exchange is much
better justified.
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Glueballs and Exclusive Hadron Production at the Tevatron

Michael G. Albrowa

aFermilab, USA

The study of low mass hadronic systems in double pomeron exchange processes is completely virgin territory at the
Tevatron. These are events with the p and p̄ at Feynman xF ≥ 0.997 or so, with central masses less than a few GeV and large
rapidity gaps in both forward directions. Important physics topics are (a) to search for glueball states G by the exclusive
process pp̄→ pGp̄ (b) to measure exclusive hyperon-antihyperon production up to Ω−Ω̄+ (c) to search for exclusive χc and
χb production (d) to search for events with an unusually large or small ratio of charged hadrons to πo (DCC = disoriented
chiral condensate?). These studies would all extend our understanding of QCD to the low-Q2 domain. I discuss briefly how
they could be carried out in CDF and DØ .

1. DOUBLE POMERON EXCHANGE

Double pomeron exchange, DPE, events [1] contain
two large rapidity gaps, where by “large” is meant not
exponentially damped on a scale of order one unit of
rapidity. A region ∆η (or better ∆y) as large as (say)
4 units with no hadrons is dominated by pomeron, P ,
exchange in the t-channel, with little background from
other processes (non-diffractive or reggeon exchange).
The “pomeron” is a colorless but strongly interact-
ing entity with the quantum numbers of the vacuum:
No charge, no isospin, positive parity, C-parity and
G-parity. Probably at low |t| and Q2 it is predomi-
nantly two or more gluons in a colorless combination.
Probing it with virtual photons at HERA [2], and ob-
serving diffractive W production at the Tevatron [3],
demonstrate a qq̄ component at large Q2.

The total rapidity range of a pp̄ collision is ∆y =
ln

�
� 2
p
, which was 8.4 at the CERN ISR (

√
s = 63

GeV), 13.0 at the Spp̄S (
√
s = 630 GeV), and is 15.3

at the Tevatron (
√
s = 2000 GeV). ∆y = 6.9 (7.4)

at the fixed target experiments WA102 [4] (E690 [5])
with p � � � � = 450 (800) GeV/c. At the colliders if we
restrict ourselves to events with all central hadrons in
|η| ≤ 1.5 (155

� ≥ θ ≥ 25
�

) where they can be well
measured, the forward rapidity gaps exceed 2.7 at the
ISR and 6.1 at the Tevatron. The AFS experiment
at the ISR [6] showed very little non-DPE background
in central π+π− production. Gaps exceeding 6 units
at the Tevatron will have negligible background from
non-pomeron exchange ∗.

2. GLUEBALL PHYSICS

At this workshop Barnes [7], Kharzeev [10] and
Pumplin [11] also discussed hadron spectroscopy in
double pomeron exchange processes. There are differ-

∗I assume no Odderon exchange. That could be looked for by the
exclusive production of a central ω or φ with IGJPC = 0−1−−.

ent ways of thinking about the exclusive process pp̄→
pGp̄ with G a central gluonium or glueball state.
(D.Robson [12] first suggested this channel.) One is to
note that any hadrons or hadron pairs with the quan-
tum numbers of the vacuum will be present as virtual
states in the vacuum and they can be made real by
the collision of two hadrons, whose role is essentially to
allow 4-momentum to be conserved. (What is the spec-
trum of these states, for specific quantum numbers?)
Another is to consider the fusion of a colorless pair (or
triplet) of gluons from each beam particle, noting that
the gluon density rises rapidly as x � � ��� � � � becomes
very small. Yet another is to note that glueball states,
like all hadrons, must couple to the pomeron and if the
quantum numbers are right the process will proceed by
PP → G. Allowed quantum numbers are I = 0, C = +
but any J

�

[11]. The advantage of the exclusive pro-
cess is clear: Glueballs are probably being produced
with a high cross section in inelastic collisions but when
the multiplicity is high the combinatorial background
is overwhelming. In exclusive production there is no
combinatorial background.

For this physics one would like to select events with
2, 4 or possibly 6 well measured charged particles in
the central detectors. Particle identification (π,K, p)
is important both for reconstructing the mass and
checking that the overall charge, strangeness, and
baryon number are zero. Additional neutral par-
ticles (γ, π

�

,K
�

� , n) may be looked for and either
used in the final state combination or used to re-
ject non-exclusive events. The list of interesting
final states is long and fairly obvious, including
π+π−,K+K−,K

�

� K
�

� , pp̄,ΛΛ̄, φφ, 4π, ππKK,KKKK,
etc. The mass resolution when the charged tracks
are all measured is very good, typically 10 MeV. It
would be good to be able to use the electromagnetic
calorimetry to measure neutral states like ηη → 4γ
but I suspect this is very difficult to trigger on, the
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backgrounds would be high and the mass resolution
poor. However I have not done a study of this.

3. HYPERON AND OTHER PAIRS

At the Axial Field Spectrometer at the ISR exclusive
central pp̄ pairs were observed [6] with masses from 2
GeV to 2.8 GeV. With only 64 events there were no sig-
nificant structures. (WA102 [4] also reported no signif-
icant structures with more events but more non-DPE
background.) The total cross section for pp → ppp̄p
with the central p and p̄ having |η| ≤ 1.5 is 40±20
nb which, if s-independent†, would correspond to a
rate of 4 Hz at L = 1032cm−2s−1. Actually with that
luminosity and 36 bunches (∆t = 396ns) the fraction
of inelastic collisions that occur in isolation (therefore
useful for gap physics) is only about 13%. The opti-
mum luminosity for gap physics is when < n >= 1,
at L ≈ 5 × 1031cm−2s−1, and the fraction of events
that occur singly is then 37%. So perhaps one could
get thousands of events in an hour of special running,
along with other channels that could come with the
same trigger (say 2 or 4 central charged particles). This
estimate is assuming full |t| coverage and should be
multiplied by the t-acceptance if it is limited.

If proton pairs are produced by DPE we must also
have hyperon pairs Y Ȳ produced. Just using charged
particles, and allowing for displaced vertices, one can
measure pairs of Λ,Ξ−,Ξ(1530),Ω− and maybe even
Λ � . Using γ and π

�

other pairs like Σ
�

,Σ+ and Ξ
�

become accessible. Why would one want to do this?
The wealth of data possible can be used to measure the
coupling of all these baryons to the pomeron, and relate
them to elastic and total cross sections ... does the
phenomenology hang together? How do the Y Ȳ mass
spectra depend on Y , and on t1, t2 if they are mea-
sured. If one measures also meson pair production (φφ)
how do the cross sections compare at the same mass
(2-quarks vs 3-quarks)? With hyperon pairs one can
measure polarizations and hence study spin-spin cor-
relations which might reveal interesting things about
the spin of the pomeron (are there correlations with
t1, t2,∆φ(pp̄))? When K

�

K̄
�

pairs are produced are
they K

�

� K
�

� and K
�

� K
�

� or sometimes K
�

� K
�

� , and is
the answer dependent on M � ¯� ? If both kaons were
to decay to π+π− is there a correlation between their
decay times as there is in φ decay?

†The cross section should be s-independent for αP (0) = 1.0,
whereas it falls with s for reggeon exchange αR(0) < 1.0.

4. HYBRIDS, HEAVY MESONS, AND
HIGGS

There can be a very interesting spectroscopy of, pos-
sibly narrow, hybrid states bb̄g [7] [13]. Those with the
allowed quantum numbers (DPE is a Quantum Number
Filter) will be produced exclusively; e.g. one gluon
from each beam proton fuse gg → g and another make
gg → bb̄.

Also we should search for the 0+0++ χ � and χ �

states; the latter decays to Υγ to µ+µ−γ. One very in-
teresting reason to study isolated central χ � production
is because it may instruct us about a possible Higgs
production (discovery?) channel [8]. In the former
case two gluons fuse to form the χ � , and another soft
gluon is exchanged between the two beam particles to
leave them colorless and unexcited. (This is called
non-factorisable double pomeron exchange, NFDP.)
Measuring this cross section will enable us to better
estimate the similar process where the two gluons (low
p � but p � ≈ p � � � � − � H

2 ) make a Higgs via a top-quark
loop, and another soft gluon sorts out the color. The
process is then pp̄ → pHp̄. Measuring the outgoing
x � ≈ 0.94 beam particles in precision roman pot detec-
tors (this requires dipole spectrometers on both sides
to get to |t| = t � � � ) the missing mass resolution can
be much better than the effective mass resolution of
the H → bb̄ jet pair. . Neither CDF nor DØ have
the apparatus for this but if the signal estimates and
(DPE/QCD b − b̄ dijet) backgrounds are encouraging
then it could be done [9].

Studies of meson pairs may be extendable to the
charm sector; the masses of D and D � are little above
the Ω mass, and there are exclusive decay modes e.g.
KKπ with branching fractions around 9% and 5% re-
spectively. Unfortunately exclusive BB̄ pairs are prob-
ably unobtainable.

All these processes, systematically studied, will
clearly tell us a lot about the nature of diffrac-
tion/pomerons, in addition to the hybrid or meson
spectroscopy itself.

5. DISORIENTED CHIRAL CONDENSATES
etc.

High energy cosmic ray events have been observed
with either an anomalously large ratio of charged
hadrons:γ/e (Centauros; one striking event has a ratio
49:1) or a very small ratio (Anticentauro; one event
has 1 charged track and 32 γ’s in an η, φ circle of
radius 0.7). Such events have been interpreted [14] as
manifestations of a “Disoriented Chiral Condensate”.
No accelerator experiments have seen anomalous tails
on the charged:neutral ratio [15]. No searches have
yet been made in the central region of DPE events.
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It is worthwhile making a search, because as I have
said for low-t, low Q2 (no jets) events the pomeron
might be dominated by just gluons. In that case
this would be the first study of high mass (≈ 50
GeV) “isotropic” events where the initial state is (to
some degree) purely gluonic. One would trigger on
gap-X-gap events, anti-select on jets, construct the ra-
tio Σ �

T (charged tracks) : Σ � T (electromagnetic cal)
and study the tails (with a single vertex, rejecting cos-
mics, etc.).

High charged multiplicity events, DCC candidates
or not, can be analysed for Bose-Einstein correlations,
which can be used to measure the radius of the particle
emission (separately for pions and kaons, if identified
... also for K

�

� if there are enough of them per event) in
both the longitudinal and transverse directions. The
K/π ratio is another interesting quantity to study ei-
ther in a sample of DCC candidate events or in other
special classes of events. Note that the AFS experi-
ment [6] found, for 2-central tracks, R[K+K−/π+π−]
above 1.0 just above the KK̄ threshold, but this is
probably a manifestation of the prominent f � (970) res-
onance.

6. EXPERIMENTAL CONSIDERATIONS

CDF and DØ have some complementary aspects for
this physics and it would be best to have both ex-
periments producing results, for cross checks where
they overlap. DØ will have the apparent advantage
of having roman pots (quadrupole spectrometers) on
both the p and the p̄ side, while CDF only has a dipole
pot spectrometer on the p̄ side. So DØ can tag both
beam particles and measure their t and φ, which CDF
cannot. Very interesting dependences of the central
mass spectra (π+π−) on the relative azimuth ∆φ have
been observed [16] at

√
s = 28 GeV/c. Are these de-

pendences due to regge exchanges which will die away
with

√
s ? DØ will pay a fairly severe rate penalty

≈ 10−4 for double tagging, because |t � � � | ≈ 0.5− 0.6
GeV2 on each side. Even when both p and p̄ are
detected, the missing mass resolution is O(GeV); the
spectroscopy is done by reconstructing the effective
mass of the central system. The CDF approach is
to ignore the forward p and p̄, allowing them to go
down the beam pipe, which gives acceptance for all |t|.
CDF can trigger on rapidity gaps on both sides, and to
make this possible have installed Beam Shower Coun-
ters (BSC) where possible around the beam pipe (just
in front of the low-β quadrupoles, before and after the
electrostatic separators, and on the p̄ side just before
the Roman Pots at 56 m). CDF hopes to install also
Miniplug Calorimeters for 3.5 ≤ |η| ≤ 5.5 (θ ≤ 3

�

) and
in this region there are also the Cerenkov Luminosity

Counters (CLC) which count charged particles from
the interaction region. All of these in veto will give
rapidity gaps of 4 units on each side. It might be
advantageous to require even larger gaps by (in CDF)
vetoing on energy in the plug calorimeter (which has
an ηφ geometry) with |η| ≥ 2.0 ... after all one cannot
measure tracks well there. DØ could, I believe, make
a similar trigger. These “2-gap” triggers will be very
effective at vetoing multiple interactions. Of course
some positive requirement (more than the beam cross-
ing signal X0) is also needed. This could be made
in principal, in CDF or DØ , by requiring a minimal
energy E in the complementary central region; above
noise levels but as low as possible. CDF has the more
attractive possibility of using its time-of-flight (TOF)
barrel (216 φ-segments of fast scintillator) to trigger
on a central charged particle multiplicity of 2,4 or 6
particles. (Actually the trigger would probably be only
able to use φ segments of 15◦ for technical reasons.)
The tracks which hit the TOF barrel are full length
and very well measured. Most will also be identified:
The TOF gives 2σ separation of π and K to 1.6 GeV/c,
and the Central Outer Tracker (COT) will measure
dE/dx to 10% which will provide further information
on π,K, p identification.

The best way of implementing this physics program
in CDF and DØ is probably to set up a trigger table
based on two forward gaps and the various central re-
quirements. One wants in addition the same central
requirements with one or no forward gaps required,
but with large prescaling factors to compensate for the
much higher rates. These samples are used to mea-
sure cross sections and estimate the signal:background
(multiplicity = 0 tails of non-diffractive events). Ide-
ally one would like this trigger table to give a rate
of about 50 Hz at L = 5.1031cm−2s−1, and to take
3-4 hours of test data at such a luminosity (or at a
lower luminosity if the trigger cross section is higher).
These 0.5-1.0 million events should be analysed both
for their own physics and to refine triggers. This should
be enough to whet our appetite for the most promising
and interesting channels, and either to take more ded-
icated running towards the end of stores or to include
this as a fraction of the “QCD bandwidth”.

7. CONCLUSION

There is a great deal of new physics to study with low
mass exclusive central states in DPE at the Tevatron.
The hardware should exist (the CDF Miniplugs should
be approved!) and the fraction of additional integrated
dead-time needed is negligible.

266



REFERENCES

1. See e.g. M.G. Albrow, Double Pomeron Ex-
change from the ISR to the SSC, Nucl. Phys.
B (Proc.Supp.) 12, 291 (1990) and references
therein.

2. M. Derrick et al. (ZEUS), Phys. Lett. B315, 481
(1993); T. Ahmed et al.(H1), Nucl. Phys. B429,
477 (1994).

3. F. Abe et al. (CDF), Phys. Rev. Lett. 78, 2698
(1997); L. Coney (DØ), Observation of Diffractive
W Production at DØ , APS Meeting, Atlanta GA,
March 1999.

4. See e.g. D. Barberis et al. (WA102), Phys. Lett.
B432, 436 (1998) for DPE → φφ; D.Barberis et
al., Phys. Lett. B446, 342 (1999) for pp̄ and ΛΛ̄,
and other WA102 papers.

5. M.A. Reyes et al., Phys. Rev. Lett. 81, 4079
(1998); M. Sosa et al., Phys. Rev. Lett. 83, 913
(1999) (E690).

6. T. Akesson et al. (AFS,R807), Nucl.Phys. B264,
154 (1986).

7. Ted Barnes, Glueballs and Exotics in QCD, talk
at this workshop.

8. A. Bialas and P.V. Landshoff, Phys. Lett. B256,
540 (1991); D. Kharzeev and E. Levin, hep-
ph/0005311 and references therein.

9. M. Albrow,D. Litvintsev,P. Murat and A. Ros-
tovtsev, Run II SUSY Higgs Workshop proc.
(http://fnth37.fnal.gov/susy.html) pp 87-89.

10. Dmitri Kharzeev, Diffractive Production of Glue-
balls, these proceedings.

11. Jon Pumplin, Double Pomeron Physics in Run II,
these proceedings.

12. D. Robson, Nucl. Phys. B130, 328 (1977).
13. See e.g. P.R. Page,E.S. Swanson and A.P. Szczepa-

niak, Phys. Rev. D59:034016 (1999).
14. J.D. Bjorken, Int. J. Mod. Phys. A7, 4189 (1992).
15. For a CDF limit, see P. Melese, Proc.XI Topical

Workshop on pp̄ Collider Physics, Padova, Italy
(1996). FERMILAB-Conf-96/205-E.

16. D. Barberis et al. (WA102), Phys. Lett. B397, 339
(1997), F. Close, A. Kirk and G. Schuler, Phys.
Lett. B477, 13 (2000).

267



A Determination of Pomeron Intercepts at Colliders
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A method allowing for a direct comparison of data with theoretical predictions is proposed for forward jet production at
HERA and Mueller-Navelet jets at Tevatron. An application to the determination of the effective Pomeron intercept in the
BFKL-LO parameterization from dσ/dx data at HERA leads to a good fit with a significantly higher effective intercept,
αP = 1.43±0.025(stat.)±0.025(syst.), than for proton (total and diffractive) structure functions. It is however less than the
value of the pomeron intercept using dijets with large rapidity intervals obtained at Tevatron. We also evaluate the rapidity
veto contribution to the higher order BFKL corrections. We suggest to measure the dependence of the dijet cross-sections
as a function of the jet transverse energies as a signal for BFKL pomeron at Tevatron.

1. Forward jet cross-section at HERA

The study of forward jets at colliders is considered
as the milestone of QCD studies at high energies, since
it provides a direct way of testing the perturbative
resummations of soft gluon radiation. More precisely,
the study of one forward jet (w.r.t. the proton) in an
electron-proton collider [1] seems to be a good can-
didate to test the energy dependence of hard QCD
cross-sections. It is similar to the previous proposal of
studying two jets separated by a large rapidity interval
in hadronic colliders [2], for which only preliminary
results are available [3]. This test is also possible in
γ∗-γ∗ scattering [4] but here the statistics and the
energy range are still insufficient to get a reliable de-
termination of the physical parameters for hard QCD
cross-sections. Indeed, the proposed (and favored for
the moment being) set-up [1] is to consider jets with
transverse momentum k � of the order of the photon
virtuality Q allowing to damp the QCD evolution as a
function of k � (DGLAP evolution [5]) in favor of the
evolution in energy at fixed k � (BFKL evolution [6]).

In contrast to full Monte-Carlo studies we want to
focus on the jet cross section dσ/dx observable itself,
by a consistent treatment of the experimental cuts
and minimizing the uncertainties for that particular
observable. Let us remark that our approach is not
intended to provide a substitution to the other meth-
ods, since the Monte-Carlo simulations have the great
merit of making a set of predictions for various ob-
servables. Hence, our method has to be considered as
complementary to the others and dedicated to a better
determination of the effective Pomeron intercept using
the dσ/dx data. As we shall see, it will fix more pre-
cisely this parameter, but it will leave less constrained
other interesting parameters, such as the cross-section

normalization.
The cross-section for forward jet production at

HERA in the dipole model reads [10]:

d(4)σ

dxdQ2dx � dk2� dΦ
=
πN � α2α � (k2� )

Q4k2� f � � � (x, µ2� )

Σe2
�

∫ 1
2 + � ∞

1
2− � ∞

dγ

2iπ

(
Q2

k2�

) �

exp{ε(γ, 0)Y } ×

×
[
h � (γ) + h � (γ)

γ
(1− y) +

h � (γ)

γ

y2

2

]
(1)

where

Y = ln
x �

x
(2)

ε(γ, p) = ᾱ [2ψ(1)− ψ(p+ 1− γ)− ψ(p+ γ)] (3)

f � � � (x, µ2� ) = G(x, µ2� ) +
4

9
Σ(Q � + Q̄ � ) (4)

µ2� ∼ k2� , (5)

are, respectively, Y the rapidity interval between the
photon probe and the jet, ε(γ, p) the BFKL ker-
nel eigenvalues, f � � � the effective structure function
combination, and µ � the corresponding factorization
scale. The main BFKL parameter is ᾱ, which is the
(fixed) value of the effective strong coupling constant
in LO-BFKL formulae. Note that we gave the BFKL
formula not including the azimuthal dependence as
we will stick to the azimuth-independent contribution
with the dominant exp{ε(γ, 0)Y } factor.

The so-called “impact factors” h � , h �

(
h �

h �

)
=
α � (k2� )

3πγ

(Γ(1− γ)Γ(1 + γ))3

Γ(2− 2γ)Γ(2 + 2γ)

1

1− 2
3γ(

(1 + γ)(1− �

2 )
γ(1− γ)

)
, (6)
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are obtained from the k � factorization properties [15]
of the coupling of the BFKL amplitudes to external
hard probes. The same factors can be related to the
photon wave functions [16,14] within the equivalent
context of the QCD dipole model [17].

Our goal is to compare as directly as possible the
theoretical parameterization (1) to the data which are
collected in experiments [7,8]. The crucial point is
how to take into account the experimentally defined
kinematic cuts [7,8].

The main problem to solve is to investigate the effect
of these cuts on the determination of the integration
variables leading to a prediction for dσ/dx from the
given theoretical formula for d(4)σ as given in formula
(1). The effect is expected to appear as bin-per-bin
correction factors to be multiplied to the theoretical
cross-sections for average values of the kinematic vari-
ables for a given x-bin before comparing to data (e.g.
fitting the cross-sections) [9].

The experimental correction factors have been de-
termined using a toy Monte-Carlo designed as follows.
We generate flat distributions in the variables k2� /Q2,
1/Q2, x � , using reference intervals which include the
whole of the experimental phase-space (the Φ variable
is not used in the generation since all the cross-section
measurements are φ independent). In practice, we
get the correction factors by counting the numbers of
events which fulfill the experimental cuts given in Table
I for each x-bin. The correction factor is obtained
by the ratio to the number of events which pass the
experimental cuts and the kinematic constraints, and
the number of events which fullfil only the kinematic
constraints,i.e. the so-called reference bin. The correc-
tion factors are given in reference [9].

We perform a fit to the H1 and ZEUS data with
only two free parameters. these are the effective
strong coupling constant in LO BFKL formulae ᾱ cor-
responding to the effective Lipatov intercept α � =
1 + 4 log 2ᾱN � /π, and the cross-section normalization.
The obtained values of the parameters and the χ2 of
the fit are given in Table III for a fit to the H1 and
ZEUS data separately, and then to the H1 + ZEUS
data together.

The χ2 of the fits have been calculated using sta-
tistical error only and are very satisfactory (about
0.6 per point for H1 data, and 1. per point for ZEUS
data). We give both statistical and systematic errors
for the fit parameters. The values of the Lipatov in-
tercept are close to one another and compatible within
errors for the H1 and ZEUS sets of data, and indicate
a preferable medium value (α � = 1.4− 1.5). We also
notice that the ZEUS data have the tendency to favour
a higher exponent, but the number of data points used
in the fit is much smaller than for H1, and the H1

Table 1
Fit results.

fit ᾱ αP

H1 0.17 ± 0.02 ± 0.01 1.44 ± 0.05 ± 0.025
ZEUS 0.20 ± 0.02 ± 0.01 1.52 ± 0.05 ± 0.025

H1+ZEUS 0.16 ± 0.01 ± 0.01 1.43 ± 0.025 ± 0.025
D0 0.24 ± 0.02 ± 0.02 1.65 ± 0.05 ± 0.05

fit Norm. χ2(/dof)

H1 29.4 ± 4.8 ± 5.2 5.7 (/9)
ZEUS 26.4 ± 3.9 ± 4.7 2.0 (/2)

H1+ZEUS 30.7 ± 2.9 ± 3.5 12.0 (/13)

data are also at lower x. The normalization is also
compatible between ZEUS and H1. The fit results
are shown in Figure 1 and compared with the H1 and
ZEUS measurements.

2. Comparison with Tevatron results

The final result of our new determination of the ef-
fective pomeron intercept is α � = 1.43± 0.025 (stat.)
±0.025 (syst.). Our method allows a direct comparison
of the intercept values with those obtained in other
experimental processes, i.e. γ∗γ∗ cross-sections at LEP
[4], jet-jet cross-sections at Tevatron at large rapidity
intervals [3], F2 and F

�
2 proton structure function mea-

surements [12–14].
Let us compare our results with the effective in-

tercept we obtain from recent preliminary dijet data
obtained by the D0 Collaboration at Tevatron [3]. The
measurement consists in the ratio R = σ1800/σ630

where σ is the dijet cross-section at large rapidity inter-
val Y ∼ ∆η for two center-of-mass energies (630 and
1800 GeV), ∆η1800 = 4.6, ∆η630 = 2.4. The exper-
imental measurement is R = 2.9 ± 0.3 (stat.) ±0.3
(syst.). Using the Mueller-Navelet formula [2], this
measurement allows us to get a value of the effective
intercept for this process

R =

∫ 1
2 + � ∞
1
2− � ∞

� �

2 � � � (1− � )e
� ( � � 0)∆ �

1800

∫ 1
2 + � ∞
1
2− � ∞

� �

2 � � � (1− � )e
� ( � � 0)∆ �

630

. (7)

We get α � =1.65 ± 0.05 (stat.) ± 0.05 (syst.), in
agreement with the value obtained by D0 using a
saddle-point approximation [3] (see Table 1). This
intercept is higher than the one obtained in the forward
jet study.

Formula (7) is obtained after integration over the jet
transverse energies at 630 and 1800 GeV, E �

1 , E �
2 . We
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Figure 1. The H1 data (k � > 3.5 GeV, k � > 5 GeV), and the ZEUS data are compared with the result of the fit.
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note that the non integrated formula

R(E �
1/E

�
2) =

∫ 1
2 + � ∞
1
2− � ∞

� �

2 � �

( �
T1�
T2

)2 �

e � (
� � 0)∆ �

1800

∫ 1
2 + � ∞
1
2− � ∞

� �

2 � �

( �
T1�
T2

)2 �

e � (
� � 0)∆ �

630

(8)

shows a sizeable dependence on E �
1/E

�
2 , which could

be confronted with experiment. Let us show both the
integrated and E �

1/E
�

2 dependent cross-sections in
Figure 2.

The question arises to interpret the different values
of the effective intercept. It could reasonably come
from the differences in higher order QCD corrections
for the BFKL kernel and/or in the impact factors
depending on the initial probes (γ∗ vs. jets). In
order to evaluate the approximate size of the higher
order BFKL corrections, we will use their description
in terms of rapidity veto effects [18]. In formula (1),
we replace exp(ε(γ, 0)Y ) by

Σ∞� =0 θ(Y − (n+ 1)b)
[ε(γ, 0) (Y − (n+ 1)b)]

�

Γ(n+ 1)
. (9)

The Heaviside function θ ensures that a BFKL ladder
of n gluons occupies (n+ 1)b rapidity interval where b
parametrises the strength of NLO BFKL corrections.
The value of the leading order intercept is fixed to
α � = 1.75(α � (Q2 = 10) = 0.28), where Q2 = 10
GeV2 is inside the average range of Q2 in the forward
jet measurement. The fitted value of the b parameter
obtained using the forward jet data is found to be 1.28
± 0.08 (stat.) ± 0.02 (syst.). Imposing the same value
of α � with Tevatron data gives b=0.21± 0.11 (stat.) ±
0.11 (syst.). Note that the theoretical value of b for the
NLO BFKL kernel is expected to be of the order 2.4,
which is also compatible with the result obtained for
the γ∗γ∗ cross-section. A contribution from the NLO
impact factors is not yet known, and could perhaps
explain the different values of b.

3. Conclusion

To summarize our results, using a new method to
disentangle the effects of the kinematic cuts from the
genuine dynamical values we find that the effective
pomeron intercept of the forward jet cross-sections at
HERA is α � = 1.43± 0.025 (stat.) ±0.025 (syst.). It
is much higher than the soft pomeron intercept, and,
among those determined in hard processes, it is inter-
mediate between γ∗γ∗ interactions at LEP and dijet
productions with large rapidity intervals at Tevatron,
where we get α � =1.65 ± 0.05 (stat.) ± 0.05 (syst.).

Looking for an interpretation of our results in terms
of higher order BFKL corrections expressed by rapidity
gap vetoes b between emitted gluons, we find a value
of b =1.3 at HERA, and 0.21 at Tevatron. The HERA

1
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4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3

Figure 2. E �
1/E

�
2 dependence of the dijet cross-

section ratio. E �
1/E

�
2 is given in the horizontal axis,

and R in vertical axis. In full line is given the non
integrated R(E �

1/E
�

2) (see formula (8)), in dotted
line, the integrated R (formula (7) and in dashed line,
the saddle point approximation of R [2], for the fitted
value of α � (see table 1).

value is sizeable but less than the theoretically pre-
dicted [11] value for the NLO BFKL kernel (b =2.4).
The Tevatron value is compatible with zero. The ob-
served dependence in the process deserves further more
precise studies [19].

We suggest to measure the dependence of the dijet
cross-sections as a function of the jet transverse ener-
gies as a signal for BFKL pomeron at Tevatron run II.
The Mueller Navelet jet study would also benefit from
a lower energy run at the end of Run II to allow a
normalization independence of the intercept determi-
nation and BFKL tests.
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BFKL Monte Carlo for Dijet Production at Hadron Colliders
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The production of jet pairs at large rapidity difference at hadron colliders is potentially sensitive to BFKL physics. We
present the results of a BFKL Monte Carlo calculation of dijets at the Tevatron. The Monte Carlo incorporates kinematic
effects that are absent in analytic BFKL calculations; these effects significantly modify the behavior of dijet cross sections.

1. MONTE CARLO APPROACH TO BFKL

Fixed-order QCD perturbation theory fails in some
asymptotic regimes where large logarithms multiply
the coupling constant. In those regimes resumma-
tion of the perturbation series to all orders is nec-
essary to describe many high-energy processes. The
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1]
performs such a resummation for virtual and real soft
gluon emissions in such processes as dijet production
at large rapidity difference in hadron-hadron collisions.
BFKL resummation gives [2] a subprocess cross section
that increases with rapidity difference as σ̂ ∼ exp(λ∆),
where ∆ is the rapidity difference of the two jets with
comparable transverse momenta p �

1 and p �
2.

Experimental studies of these processes have re-
cently begun at the Tevatron pp̄ and HERA ep col-
liders. Tests so far have been inconclusive; the data
tend to lie between fixed-order QCD and analytic
BFKL predictions. However the applicability of an-
alytic BFKL solutions is limited by the fact that they
implicitly contain integrations over arbitrary numbers
of emitted gluons with arbitrarily large transverse mo-
mentum: there are no kinematic constraints included.
Furthermore, the implicit sum over emitted gluons
leaves only leading-order kinematics, including only
the momenta of the ‘external’ particles. The absence
of kinematic constraints and energy-momentum con-
servation cannot, of course, be reproduced in exper-
iments. While the effects of such constraints are in
principle sub-leading, in fact they can be substantial
and should be included in predictions to be compared
with experimental results.

The solution is to unfold the implicit sum over gluons
and to implement the result in a Monte Carlo event
generator [3,4]. This is achieved as follows. The BFKL
equation contains separate integrals over real and vir-
tual emitted gluons. We can reorganize the equation by
combining the ‘unresolved’ real emissions — those with

transverse momenta below some minimum value (cho-
sen to be small compared to the momentum thresh-
old for measured jets) — with the virtual emissions.
Schematically, we have
∫

� � � � � � �
+

∫

� � � �
=

∫

� � � � � � � + � � � � � � � � � � �
+

∫

� � � � � � � � �
(1)

We perform the integration over virtual and unresolved
real emissions analytically. The integral containing the
resolvable real emissions is left explicit.

We then solve by iteration, and we obtain a differ-
ential cross section that contains a sum over emitted
gluons along with the appropriate phase space factors.
In addition, we obtain an overall form factor due to
virtual and unresolved emissions. The subprocess cross
section is

dσ̂ = dσ̂0 ×
∑
� ≥0

f � (2)

where f � is the iterated solution for n real gluons emit-
ted and contains the overall form factor. It is then
straightforward to implement the result in a Monte
Carlo event generator. Because emitted real (resolved)
gluons appear explicitly, conservation of momentum
and energy, as well as evaluation of parton distribu-
tions, is based on exact kinematics for each event. In
addition, we include the running of the strong coupling
constant. See [3] for further details.

2. DIJET PRODUCTION AT HADRON
COLLIDERS

At hadron colliders, the BFKL increase in the dijet
subprocess cross section with rapidity difference ∆ is
unfortunately washed out by the falling parton distri-
bution functions (pdfs). As a result, the BFKL pre-
diction for the total cross section is simply a less steep
falloff than obtained in fixed-order QCD, and tests of
this prediction are sensitive to pdf uncertainties. A
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Figure 1. The azimuthal angle decorrelation in di-
jet production at the Tevatron as a function of dijet
rapidity difference ∆, for jet transverse momentum
p � > 20 GeV. The analytic BFKL solution is shown
as a solid curve and a preliminary D∅ measurement [6]
is shown as diamonds. Error bars represent statisti-
cal and uncorrelated systematic errors; correlated jet
energy scale systematics are shown as an error band.

more robust prediction is obtained by noting that the
emitted gluons give rise to a decorrelation in azimuth
between the two leading jets.[5,3] This decorrelation
becomes stronger as ∆ increases and more gluons are
emitted. In lowest order in QCD, in contrast, the jets
are back-to-back in azimuth and the (subprocess) cross
section is constant, independent of ∆.

This azimuthal decorrelation is illustrated in Fig-
ure 1 for dijet production at the Tevatron pp̄ col-
lider [3], with center of mass energy 1.8 TeV and jet
transverse momentum p � > 20 GeV. The azimuthal
angle difference ∆φ is defined such that cos ∆φ = 1 for
back-to-back jets. The solid line shows the analytic
BFKL prediction. The BFKL Monte Carlo prediction
is shown as crosses. We see that the kinematic con-
straints result in a weaker decorrelation due to sup-
pression of emitted gluons, and we obtain improved
agreement with preliminary measurements by the D∅
collaboration [6], shown as diamonds in the figure.

In addition to studying the azimuthal decorrelation,
one can look for the BFKL rise in dijet cross section
with rapidity difference by considering ratios of cross
sections at different center of mass energies at fixed
∆. The idea is to cancel the pdf dependence, leaving
the pure BFKL effect. This turns out to be rather
tricky [8], because the desired cancellations occur only
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∆1

Figure 2. The ratio R12 of the dijet cross sections
at the two collider energies

√
s1 = 630 GeV and√

s2 = 1800 GeV, as defined in the text. The curves
are: (i) the BFKL MC predictions (solid curve), (ii)
the ‘naive’ BFKL prediction (dashed curve), and (iii)
the asymptotic QCD leading-order prediction (dotted
curve) R12 = 1.

at lowest order. Therefore we consider the ratio

R12 =
dσ(
√
s1,∆1)

dσ(
√
s2,∆2)

(3)

with ∆2 defined such that R12 = 1 in QCD lowest-
order. the result is shown in Figure 2, and we see that
the kinematic constraints strongly affect the predicted
behavior, not only quantitatively but sometimes qual-
itatively as well. More details can be found in [8].

3. CONCLUSIONS

In summary, we have developed a BFKL Monte
Carlo event generator that allows us to include the
subleading effects such as kinematic constraints and
running of α � . We have applied this Monte Carlo
to dijet production at large rapidity separation at
the Tevatron. We found that kinematic constraints,
though nominally subleading, can be very important.
In particular they lead to suppression of gluon emis-
sion, which in turn suppresses some of the behavior
that is considered to be characteristic of BFKL physics.
It is clear therefore that reliable BFKL tests can only
be performed using predictions that incorporate kine-
matic constraints.
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Run 2 Plans for Hard Diffraction Studies in CDF

K. GOULIANOS, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

We summarize briefly the CDF proposal for “Further Studies in Hard Diffraction and Very Forward Physics with CDF in
Run II” and discuss the present status of the proposed detectors.

A program has been proposed for studies of hard
diffraction and very forward physics with CDF in Run
2, which requires adding to CDF three detector com-
ponents (see Fig. 1):

1) A Roman Pot Spectrometer (RPS) to detect
leading antiprotons.

2) Two MiniPlug (MP) calorimeters covering the
pseudorapidity region 3.5 < |η| < 5.5 to detect parti-
cles and jets and measure their energies.

3) A set of Beam Shower Counters (BSC) posi-
tioned around the beam pipe at four (three) locations
along the p̄ (p) beam direction to tag rapidity gaps
within 5.5 < |η| < 7.5.

The Roman Pot Spectrometer will be the one
used in Run 1C. It consists of X-Y scintillation fiber
detectors placed in three Roman Pots located at a
distance of 57 m downstream in the p̄ direction. The
detectors have a position resolution of ±100µm, which
makes possible a∼ 0.1% measurement of the p̄ momen-
tum. In Run 1C, the p̄-beam was behind the proton
beam, as viewed from the RPS side. An inverted po-
larity (with respect to Run I) of the electrostatic beam
separators will enable us to move the RPS detectors
closer to the p̄-beam and thereby gain acceptance at
small |t| down to ξ ≡ 1 − x � (p̄) = 0.03 (at larger |t|
lower ξ values can be reached with good acceptance).

The MiniPlugs will be placed within the holes of
the muon toroids (see Fig. 2). They consist of layers
of lead plates immersed in liquid scintillator (Fig. 3).
The signal is guided by 1 mm dia. WLS fibers strung
through holes in the plates, as shown, to be read out
by multi-cannel PMT’s. The “tower” structure, de-
fined by the way the fibers are grouped to be read
out, is shown in Fig. 4. A full depth (∼ 30 rl) Mini-
Plug prototype has been constructed and tested in
high energy muon, electron and pion beams with ex-
cellent results [1,2]. As of December 1999, the final
Miniplug design has been completed, the vessels and
all mechanical parts have been fabricated, a prototype
lead plate of the final design (laminated with reflective
aluminum) has been procured, and several Hamamatsu
R5900-M16 PMT’s have been acquisitioned and tested.

Beam Shower counters are rings of scintillation
counters “hugging” the beam pipe. In stations #1 the

rings are segmented into four quadrants, and in the
other stations into two. As of December 1999, all 18
counters are ready for installation.

The physics topics to be addressed include:
Hard single diffraction

W , b, J/ψ and dijet production; dependence of the
cross section on ξ and t; third-jet activity in jet pro-
duction; extraction of the pomeron structure function.

Soft and hard double diffraction
(central rapidity gaps)

Dependence of cross section of dijet events with a ra-
pidity gap between jets on jet E � and jet η separa-
tion and comparison with predictions from BFKL and
other models; measurement of the differential soft dou-
ble diffraction cross section and comparison with phe-
nomenological predictions; relationship between gap
fractions in minimum bias and dijet events.

Double pomeron exchange (DPE)
Measurement of dijet cross section in events with a
DPE topology (pomeron-pomeron collisions); extrac-
tion of the diffractive proton structure function from
DPE dijet events and comparison with the diffrac-
tive antiproton structure measured in single diffraction
(test of factorization); measurement of soft DPE cross
section (test of soft factorization); connection between
soft and hard diffractive processes; opportunities for
new physics in exclusive DPE channels.

Small-x/large-x physics:
Measurement of proton parton distribution functions
in the range 4×10−5 < x < 0.8; x � � � can be measured
as a function of the E � scale down to E � of 5 GeV.

Centauros and Disoriented Chiral Condensates
The signature for Centauros/DχCs is multiparticle
clusters of large dN/dη with abnormal charge to
neutral ratios.
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Figure 1. Location of the Beam Shower Counter sta-
tions along the p̄ direction on the West side of CDF
(not to scale). On the East side only the first three
BSC stations will be installed, as there is no room for
BSC-4.
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Figure 2. Schematic drawing showing a MiniPlug
hanging from two beams supported on one end by the
plug and on the other by the toroid (not to scale). This
scheme allows for moving the toroids and/or the plug
while the MiniPlug remains stationary.
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Figure 3. Schematic side view of a Miniplug.
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Figure 4. Proposed MiniPlug lead plate. The de-
sign is based on a hexagon geometry. Each hexagon
has six holes, with a WLS fiber inserted in each hole.
The six fibers of a hexagon are grouped together and
are viewed by one MCPMT channel. There are 252
hexagons in each MiniPlug viewed by 18 16-channel
MCPMTs. The MCPMT outputs are added in groups
of 3 to form 84 calorimeter “towers”.
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The DØ Forward Proton Detector

Andrew Brandt (DØ Collaboration)a

aUniversity of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019

The Run II DØ Forward Proton Detector is described.

1. Hard Diffraction

One of the most interesting new results from Teva-
tron Run I was the existence of large rapidity gaps
in events with a hard scattering. CDF and DØ pub-
lished several papers on events with a central rapidity
gap between jets [1,2] and have several more papers
either published or in preparation on related topics,
including diffractive production of jets [3,4], W and Z
bosons [5,6], and b quarks [7]. Improved understand-
ing of the new field of hard diffraction, which probes
otherwise inaccessible details of the strong force and
vacuum excitation, requires new detectors for tagging
and measuring scattered protons.

2. The Forward Proton Detector

The DØ Forward Proton Detector (FPD) [8] con-
sists of momentum spectrometers which make use of
accelerator magnets along with points measured on the
track of the scattered proton to calculate the proton’s
momentum and scattering angle. Tracks are measured
using scintillating fiber detectors (a prototype detec-
tor is shown in Fig. 1) located in vacuum chambers
positioned in the Tevatron tunnel 20–60 meters up-
stream and downstream of the central DØ detector.
The vacuum chambers were built in Brazil and will
be installed in the Tevatron in August 2000. One of
the completed Roman pot castles is shown in Figure 2.
The scintillating fiber detectors will be assembled at
the University of Texas at Arlington.

Figure 3 shows the layout of the FPD. In the cen-
ter of the diagram is the DØ detector (not to scale).
The dipole spectrometer consists of two scintillating
fiber detectors located after the Tevatron dipole mag-
nets (D) about 57 meters downstream of the inter-
action point on the outgoing p̄ arm, and measures
anti-protons that have lost a few per cent of the beam
momentum (and are thus deflected out of the beam
envelope and into the detector located on the radial
inside of the Tevatron ring). The detectors compris-
ing the quadrupole spectrometers are located adjacent
to the electrostatic beam separators (S) on both the
proton (P) and anti-proton (A) sides and use the low
beta quadrupole magnets (Q) as the primary analyzing

Figure 1. A photograph of the prototype scintillating fiber

detector.

magnets. They have acceptance for a large range of
proton (anti-proton) momenta and angles.

Each of the nine independent spectrometers consists
of a pair of detectors, both in the same plane: above,
below, to the right, or to the left of the beam. This
combination of spectrometers maximizes the accep-
tance for protons and anti-protons given the available
space for locating the detectors. Particles traverse thin
steel windows at the entrance and exit of each Roman
pot (the stainless steel vessel that houses the detector).
The pots are remotely controlled and can be moved
close to the beam (within a few mm) during stable
beam conditions and retracted otherwise. The scin-
tillating fiber detectors are read out by multi-anode
photomultiplier tubes and are incorporated into the
standard DØ triggering and data acquisition system.

The FPD project has proceeded well and is expected
to be ready for the start of Run II, although final
funding for the phototubes and trigger electronics has
not yet been secured. The FPD will allow new insight
into an intriguing class of events that are not currently
understood within the Standard Model. It allows us
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Figure 3. The layout of the Roman pot stations and Tevatron components comprising the Forward Proton Detector as described in

the text (not drawn to scale).

Figure 2. A completed Roman pot castle at Fermilab along

with project leaders Alberto Santoro (left) and Andrew Brandt.

to trigger directly on events with a scattered proton,
anti-proton, or both, along with activity in the DØ
detector. In addition to improved studies of recently
discovered hard diffractive processes, the new detector
will allow a search for glueballs and exotic phenomena.
The FPD will also provide improved luminosity mea-
surements, which are an important component to all
DØ analyses.
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